精英家教网 > 高中数学 > 题目详情
17.底面是正方形,容积为16的无盖水箱,它的高为2$\root{3}{4}$时最省材料.

分析 设底面是正方形为x,则它的高为$\frac{16}{{x}^{2}}$,从而它的表面积S=x2+$\frac{64}{x}$,由此利用基本不等式能求出结果.

解答 解:设底面是正方形为x,
∵容积为16,∴它的高为$\frac{16}{{x}^{2}}$,
∵底面是正方形,容积为16的无盖水箱,
∴它的表面积S=${x}^{2}+4×x×\frac{16}{{x}^{2}}$=x2+$\frac{64}{x}$=${x}^{2}+\frac{32}{x}+\frac{32}{x}$≥$3\root{3}{{x}^{2}×\frac{32}{x}×\frac{32}{x}}$=$3\root{3}{{2}^{10}}$,
∴当x2=$\frac{32}{x}$,即x=$2\root{3}{4}$时,最省材料.
故答案为:$2\root{3}{4}$.

点评 本题考查无盖长方体水箱用料最省时它的高的求法,是基础题,解题时要认真审题,注意长方体的结构特征的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.将10个相同的小球装入3个编号为1,2,3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数是(  )
A.9B.12C.15D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列1,3,6,10,x,21,…中的x等于(  )
A.17B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow a=(2,5)$,$\overrightarrow b=(x,-2)$,且$\overrightarrow a⊥\overrightarrow b$,则x=5,$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{58}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{1}{4}$an2+p.
(1)若数列{an}就常数列,求p的值;
(2)当p>1时,求证:an<an+1
(3)求最大的正数p,使得an<2对一切整数n恒成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.点G是△ABC的重心,$|{\overrightarrow{AC}}|=1,|{\overrightarrow{BC}}|=\sqrt{2}$,且AG⊥BG,则sinC=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解关于x的不等式:mx2-(m-2)x-2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ+6sinθ-8cosθ=0(ρ≥0)
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)直线l:$\left\{{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λ\;t}\end{array}}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求与直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

同步练习册答案