精英家教网 > 高中数学 > 题目详情
10.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.4

分析 利用积分的几何意义即可得到结论.

解答 解:由题意,S=${∫}_{0}^{2}(2x-{x}^{2})dx$=$({x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{2}$=4-$\frac{8}{3}$=$\frac{4}{3}$,
故选:C.

点评 本题主要考查区域面积的计算,根据积分的几何意义,是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=\sqrt{2}$.
(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列四个命题,其中不正确的命题为(  )
A.已知cos θ•tan θ<0,那么角θ是第三或第四象限角
B.函数y=2cos(2x+$\frac{π}{3}$)的图象关于x=$\frac{π}{12}$对称
C.sin20°cos10°-cos160°sin10°=$\frac{1}{2}$
D.函数y=|sinx|是周期函数,且周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线$\left\{\begin{array}{l}x=5cosθ\\ y=5sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的长度是(  )
A.B.10πC.$\frac{5π}{3}$D.$\frac{10π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线x+(1+m)y-2=0和直线mx+2y+8=0平行,则m的值为(  )
A.1B.-2C.1或-2D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:x2+mx+1=0有两个不相等的负实根,q:方程4x2+4(m-2)x+1=0无实根,求:当p或q为真时m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.三角形ABC三边长分别为n,n+1,n+2,n∈N+,最大角C是最小角A的两倍.
(1)求cosA(用n表示)
(2)求正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线L经过点P(1,1),倾斜角α=$\frac{π}{6}$.
(1)写出直线L的参数方程;
(2)设L与圆x2+y2=4相交于A、B两点,求P点到A、B两点的距离之积|PA||PB|和距离之和|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22℃.”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位:℃):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2.
则肯定进入夏季的地区有2个.

查看答案和解析>>

同步练习册答案