【题目】在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(﹣m,0)(m,0),则m的最大值为( )
A.4
B.5
C.6
D.7
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点
,焦点在
轴上,椭圆
的短轴端点和焦点所组成的四边形为正方形,且椭圆
上任意一点到两个焦点的距离之和为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与椭圆
相交于
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
和
,若存在常数
,对于任意
,不等式
都成立,则称直线
是函数
的分界线. 已知函数
为自然对数的底,
为常数![]()
(1)讨论函数
的单调性;
(2)设
,试探究函数
与函数
是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=y+1上一定点A(﹣1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是( )
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,已知四边形
是由直角△
和直角梯形
拼接而成的,其中![]()
.且点
为线段
的中点,
,
现将△
沿
进行翻折,使得二面角![]()
的大小为
,得到图形如图(2)所示,连接
,点
分别在线段
上.
![]()
(1)证明:
;
(2)若三棱锥
的体积为四棱锥
体积的
,求点
到平面
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com