精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,若⊙C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(﹣m,0)(m,0),则m的最大值为(
A.4
B.5
C.6
D.7

【答案】C
【解析】解:由题意,∴A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,
∴圆上不相同的两点为B(2,4,),D(4,4),
∵A(3,3),BA⊥DA
∴BD的中点为圆心C(3,4),半径为1,
∴⊙C的方程为(x﹣3)2+(y﹣4)2=1.
过P,M,N的圆的方程为x2+y2=m2
∴两圆外切时,m的最大值为 +1=6,
故选:C.
求出⊙C的方程,过P,M,N的圆的方程,两圆外切时,m取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知tanα, 是关于x的方程x2﹣kx+k2﹣3=0的两实根,且3π<α< π,求cos(3π+α)﹣sin(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且椭圆上任意一点到两个焦点的距离之和为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆相交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在常数,对于任意,不等式都成立,则称直线是函数的分界线. 已知函数为自然对数的底, 为常数

(1)讨论函数的单调性;

(2)设,试探究函数与函数是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式为an= ﹣n.
(1)证明:数列{an}是等差数列;
(2)求此数列的前二十项和S20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=y+1上一定点A(﹣1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是(
A.(﹣∞,﹣3]
B.[1,+∞)
C.[﹣3,1]
D.(﹣∞,﹣3]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0)
(1)若a=1,证明:y=f(x)在R上单调递减;
(2)当a>1时,讨论f(x)零点的个数.

查看答案和解析>>

同步练习册答案