精英家教网 > 高中数学 > 题目详情

设函数f(x)=x3cosx+1,若f(a)=11,则f(-a)=________.

-9
分析:由于函数f(x)=x3cosx+1,是一个非奇非偶函数,故无法直接应用函数奇偶性的性质进行解答,故可构造函数g(x)=f(x)-1=x3cosx,然后利用g(x)为奇函数,进行解答.
解答:令g(x)=f(x)-1=x3cosx
则g(x)为奇函数,
双∵f(a)=11,
∴g(a)=f(a)-1=11-1=10
∴g(-a)=-10=f(-a)-1
∴f(-a)=-9
故答案为:-9
点评:本题考查的知识点是函数奇偶性的性质,其中构造出奇函数g(x)=f(x)-1=x3cosx,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案