精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线被圆所截得的弦的中点为P53).(1)求直线的方程;(2)若直线与圆相交于两个不同的点,求b的取值范围.

【答案】12

【解析】

I)根据圆心CP与半径垂直,可求出直线l1的斜率,进而得到点斜式方程,再化成一般式即可.

II)根据直线与圆的位置关系,圆心到直线的距离小于半径得到关于b的不等式,从而解出b的取值范围.

1)由,得

圆心,半径为3.…………………2

由垂径定理知直线直线

直线的斜率,故直线的斜率……………5

直线的方程为,即.…………………7

2)解法1:由题意知方程组有两组解,由方程组消去

,该方程应有两个不同的解,…………………9

,化简得………………10

解得

的解为.…………………………13

b的取值范围是.…………………………14

解法2:同(1)有圆心,半径为3.…………………9

由题意知,圆心到直线的距离小于圆的半径,即

,即………………………11

解得………………………13

b的取值范围是.…………………14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}是公差为2的等差数列,数列{bn满足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求数列{an}的通项公式;
(2)求bn取得最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣ax+cosx(a∈R),x∈[﹣ ].
(1)若函数f(x)是偶函数,试求a的值;
(2)当a>0时,求证:函数f(x)在(0, )上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ax2+
(I) 当a= 时,判断f(x)在其定义上的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 其中x1<x2 . 求证:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , a4+a7=20,对任意的k∈N都有Sk+1=3Sk+k2
(I) 求数列{an}的通项公式;
(Ⅱ)数列{bn}定义如下:2mbm(m∈N*)是使不等式an≥m成立所有n中的最小值,求{bn}的通项公式及{(﹣1)m1bm}的前2m项和T2m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=x2+ax+b在(0,1)上有两个不同的零点,记min{m,n}= ,则min{h(0),h(1)}的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣x+ +1(a∈R).
(1)讨论f(x)的单调性与极值点的个数;
(2)当a=0时,关于x的方程f(x)=m(m∈R)有2个不同的实数根x1 , x2 , 证明:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:

课程

数学1

数学2

数学3

数学4

数学5

合计

选课人数

180

540

540

360

180

1800

为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取了10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X,选择数学1的人数为Y,设随机变量ξ=X﹣Y,求随机变量ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中这些球除汉字外无其他差别每次摸球前先搅拌均匀随机摸出一球不放回;再随机摸出一球两次摸出的球上的汉字组成“孔孟”的概率是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案