精英家教网 > 高中数学 > 题目详情
15.过点(-1,0)的直线截圆x2+y2=1所得弦长为$\sqrt{2}$,且与直线ax+y+2=0垂直,则实数a的值为(  )
A.-1B.1C.±1D.$\sqrt{3}$

分析 由题意,设直线方程为x-ay+c=0,代入(-1,0),可得c=1,直线方程为x-ay+1=0,利用勾股定理即点到直线的距离公式,建立方程,即可得出结论.

解答 解:由题意,设直线方程为x-ay+c=0,代入(-1,0),可得c=1,
∴直线方程为x-ay+1=0,
∵点(-1,0)的直线截圆x2+y2=1所得弦长为$\sqrt{2}$,
∴圆心到直线的距离d=$\frac{1}{\sqrt{1+{a}^{2}}}=\sqrt{1-\frac{1}{2}}$
∴a=±1,
故选C.

点评 本题考查了相互垂直的直线斜率之间的关系、勾股定理、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.等差数列{an}中,a3=5,a5=3,则该数列的前10项的S10等于(  )
A.24B.25C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的数列{an}满足:an+12=tan2+(t-1)anan+1,其中n∈N*
(1)若a2-a1=8,a3=a,且数列{an}是唯一的.
①求a的值;
②设数列{bn}满足bn=$\frac{{n{a_n}}}{{4(2n+1){2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2},B={6},C={3,4,7},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(  )
A.3B.12C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα=$\frac{3}{5}$,α∈(${\frac{π}{2}$,π),cosβ=$\frac{5}{13}$且β是第一象限角,求sin(α+β),cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b.
(1)求证:a,b,c成等差数列;
(2)若b=2$\sqrt{2}$,B=$\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n和为Sn,a1=1,Sn=nan-2n2+2n(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)是否存在自然数n,使得S1+$\frac{S_2}{2}$+$\frac{S_3}{3}$+…+$\frac{S_n}{n}$+2n=1124?若存在,求出n的值; 若不存在,请说明理由;
(3)设cn=$\frac{2}{{n({{a_n}+7})}}$(n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn>$\frac{m}{32}$(m∈Z),对n∈N*恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知G点为△ABC的重心,且满足BG⊥CG,若$\frac{1}{tanB}$+$\frac{1}{tanC}$=$\frac{λ}{tanA}$,则实数λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinx=$\frac{4}{5}$,且x是第一象限角,则cosx=$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案