分析 (1)由题意的离心率求得a2=2b2,椭圆的通径丨AB丨=$\frac{2{b}^{2}}{a}$=2,即可求得a和b的值,求得椭圆的标准方程;
(2)设直线l的方程,y=kx+$\sqrt{3}$,代入椭圆方程,利用韦达定理定理及向量数量积的坐标运算,表示出$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{PM}$$•\overrightarrow{PN}$=-(1-λ)+$\frac{3λ+6}{1+2{k}^{2}}$,则当λ=-2时,-(1-λ)+$\frac{3λ+6}{1+2{k}^{2}}$=-3,则存在实数λ,使$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{PM}$$•\overrightarrow{PN}$为定值
解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$,则a2=2b2,①
则丨AB丨=$\frac{2{b}^{2}}{a}$=2,则b2=a,②
解得:a=2,b=$\sqrt{2}$,
∴椭圆的标准方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+$\sqrt{3}$,M(x1,y1),N(x2,y2),
联立$\left\{\begin{array}{l}{y=kx+\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(1+2k2)x2+4$\sqrt{3}$kx+2=0,△=(4$\sqrt{3}$k)2-4×(1+2k2)×2>0,解得:k2>$\frac{1}{4}$,
由韦达定理可知:x1+x2=-$\frac{4\sqrt{3}k}{2{k}^{2}+1}$,x1x2=$\frac{2}{2{k}^{2}+1}$,从而,$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{PM}$$•\overrightarrow{PN}$=x1x2+y1y2+λ[x1x2+(y1-$\sqrt{3}$)(y2-$\sqrt{3}$)],
=(1+λ)(1+k2)x1x2+$\sqrt{3}$k(x1+x2)+3,
=(1+λ)(1+k2)×$\frac{2}{2{k}^{2}+1}$+$\sqrt{3}$k×(-$\frac{4\sqrt{3}k}{2{k}^{2}+1}$)+3,
=$\frac{-2{k}^{2}(1-λ)+2λ+5}{1+2{k}^{2}}$,
=-(1-λ)+$\frac{3λ+6}{1+2{k}^{2}}$,
∴当λ=-2时,-(1-λ)+$\frac{3λ+6}{1+2{k}^{2}}$=-3,此时$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{PM}$$•\overrightarrow{PN}$=-3,
故存在常数λ=-2,使得$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{PM}$$•\overrightarrow{PN}$为定值-3.
点评 本题考查椭圆标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (30,42] | B. | (20,30) | C. | (20,30] | D. | (20,42) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{5}}{5}$) | B. | (0,$\frac{\sqrt{3}}{3}$) | C. | ($\frac{\sqrt{5}}{5}$,$\frac{\sqrt{3}}{3}$) | D. | ($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{5}}{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π-2}{4π}$ | B. | $\frac{π-2}{π}$ | C. | $\frac{3π-2}{4π}$ | D. | $\frac{2}{π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $10+\sqrt{5}$ | B. | $7+3\sqrt{5}$ | C. | $8+\sqrt{5}$ | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com