精英家教网 > 高中数学 > 题目详情

若f(x)=x2+bx+c,且f(1)=0 f(3)=0 求:①b与c值;②用定义证明f(x)在(2,+∞)上为增函数.

解:(1)
解之(6分)
(2)由①知f(x)=x2-4x+3,任取x1,x2∈(2,+∞),但x1<x2
f(x1-f(x2=x12-4x1-x22+4x2=(x1+x2)(x1-x2)-4(x1-x2
=(x1-x2)[(x1+x2)-4]
∵x1<x2
∴x1-x2<0
∵x1>2x2>2
∴(x1+x2)-4>0
∴f(x1)-f(x2)<0则f(x1)<f(x2)
∴f(x)在(2,+∞)上为增函数(12分)
分析:①将f(1),f(3)求出值,代入已知等式,列出方程组,求出b,c值.
②在(2,+∞)上设出任意两自变量,求出它们对应的函数值,作差,将差变形,判断出差的符号,据函数单调性的定义,得证.
点评:利用定义证明函数的单调性时,首先要在区间上设出两个自变量,再判断函数值差的符号.关键要变形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、若f(x)=x2-2x-4lnx则f(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若 f(x)=-x2+2ax 与g(x)=
a
x+1
 在区间[1,2]上都是减函数,则a的取值范围是(  )
A、(-1,0)∪(0,1)
B、(-1,0)∪(0,1]
C、(0,1]
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求f(log2x)的最小值及相应 x的值;
(2)若f(log2x)>f(1)且log2f(x)<f(1),求由x的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x2-4x-5.
(1)若f(x)>-8,求x的取值范围;   (2)若f(a)=f(b),且a≠b,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(x2+6x,5x),
b
=(
x
3
,1-x),x∈[0,9]
,若f(x)=
a
b

(1)求f(x) 的单调区间
(2)求f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案