精英家教网 > 高中数学 > 题目详情

【题目】某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为m的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足,其中,当药剂在水中释放的浓度不低于4(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升)且不高于10(毫克/升)时称为最佳净化.

(1)如果投放的药剂质量为m=4,试问自来水达到有效净化一共可持续几天?

(2)如果投放的药剂质量为m,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m的最小值.

【答案】(1)16天(2)

【解析】

(1)由题意首先得到该药剂在水中释放的浓度的解析式,然后求解不等式即可确定自来水达到有效净化一共可持续的天数.

2)由确定各段的单调性,求出值域,然后将原问题转化为恒成立的问题可得m的最小值.

1)由题意,当药剂质量为m=4,所以

时,显然符合题意.
x4,解得

综上

所以自来水达到有效净化一共可持续16天.
2)由,得:

在区间(04]上单调递增,即
在区间(47]上单调递减,即
综上,
为使恒成立,只要即可,

所以应该投放的药剂质量m的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递减,求实数的取值范围;

2)是否存在实数,使得上的值域恰好是?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点O是四边形内一点,判断结论:,则该四边形必是矩形,且O为四边形的中心是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间四边形中, ,且平面平面.

(1)求证:

(2)若直线与平面所成角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中四边形ABCD为矩形,EF分别为PAPD的中点,在此几何体中,给出下面4个结论:

直线BE与直线CF异面;直线BE与直线AF异面;直线平面PBC平面平面PAD

其中正确的结论个数为  

A. 4

B. 3

C. 2

D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性:

1f(x)|x2||x2|

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长度为的线段的两个端点分别在轴和轴上运动,动点满足,设动点的轨迹为曲线.

(1)求曲线的方程;

(2)过点且斜率不为零的直线与曲线交于两点,在轴上是否存在定点,使得直线的斜率之积为常数.若存在,求出定点的坐标以及此常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于AB两点,点C的坐标为(0,1).当m变化时,解答下列问题:

(1)能否出现ACBC的情况?说明理由;

(2)证明过ABC三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I) 当时,求函数的单调区间;

(II) 当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案