精英家教网 > 高中数学 > 题目详情
14.已知复数z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则z2-$\frac{1}{z}$等于(  )
A.1B.-1+$\sqrt{3}$iC.-1D.$\sqrt{3}$i

分析 利用复数的运算法则即可得出.

解答 解:∵z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则z2-$\frac{1}{z}$=$(\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{2}$-$\frac{1}{\frac{1}{2}+\frac{\sqrt{3}}{2}i}$=$\frac{1}{4}-\frac{3}{4}$+$\frac{\sqrt{3}}{2}$i-$\frac{\frac{1}{2}-\frac{\sqrt{3}}{2}i}{(\frac{1}{2}+\frac{\sqrt{3}}{2}i)(\frac{1}{2}-\frac{\sqrt{3}}{2}i)}$=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i-$\frac{1}{2}+\frac{\sqrt{3}}{2}$i=-1+$\sqrt{3}$i,
故选:B.

点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(2-a)lnx+$\frac{1}{x}+2ax$.
(1)若函数f(x)是单调函数求实数a的值;
(2)当a=1时,g(x)=f(x-1)-2x-b+1有两个零点x1,x2(x1<x2).求证:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高三一班举办消防安全知识竞赛,分别选出3名男生和3名女生组成男队和女队,每人一道必答题,答对则为本队得10分,答错与不答都得0分,已知男队每人答对的概率依次为$\frac{3}{4}$,$\frac{1}{2}$,$\frac{1}{2}$,女队每人答对的概率都是$\frac{2}{3}$,设每人回答正确与否相互之间没有影响,用X表示男队的总得分.
(I) 求X的分布列及其数学期望E(X);
(Ⅱ)求在男队和女队得分之和为50的条件下,男队比女队得分高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知一个四棱锥的正(主)视图和俯视图如图所示,其中a+b=10,则该四棱锥的高的最大值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校高三学生有两部分组成,应届生与复读生共2000学生,期末考试数学成绩换算为100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:
(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的[80,90),[90,100]的学生中,应届生与复读生的比例关系也是9﹕1,从抽取的[80,90),[90,100]两段的复读生中,选两人进行座谈,设抽取的[80,90)的人数为随机变量ξ,求ξ的分布列与期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知实数x,y满足$\left\{\begin{array}{l}2x+y≥0\\ x+y≤1\\ x-y≤1\end{array}\right.$,则目标函数z=x+2y的取值范围是[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手,若从中任选2人,则选出的火炬手的编号不相连的概率为(  )
A.$\frac{3}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=f(x)的定义域为[1,3],那么函数y=f(3x)的定义域为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正方形ABCD中,A(-2,1),B(3,4),若A、B、C、D顺时针方向排列,那么C(6,,-1),D(1,-4)

查看答案和解析>>

同步练习册答案