精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=(x-t)|x|(t∈R),若存在t∈(0,2),对于任意x∈[-1,2],不等式f(x)>x+a都成立,则实数a的取值范围是(  )
A.$a≤-\frac{1}{4}$B.a≤0C.$a≤\frac{1}{4}$D.a≤2

分析 写出分段函数解析式,构造函数g(x)=f(x)-x,分类求其值域,把存在t∈(0,2),对于任意x∈[-1,2],不等式f(x)>x+a都成立,转化为存在t∈(0,2),使得$\left\{\begin{array}{l}{-\frac{(t+1)^{2}}{4}>a}\\{-t>a}\end{array}\right.$,则答案可求.

解答 解:f(x)=(x-t)|x|=$\left\{\begin{array}{l}{-{x}^{2}+tx,-1≤x≤0}\\{{x}^{2}-tx,0<x≤2}\end{array}\right.$,
令g(x)=f(x)-x=$\left\{\begin{array}{l}{-{x}^{2}+(t-1)x,-1≤x≤0}\\{{x}^{2}-(t+1)x,0<x≤2}\end{array}\right.$.
当x∈[-1,0]时,g(x)的最小值为g(-1)=-t;
当x∈(0,2]时,∵$\frac{t+1}{2}$∈(0,2),
∴g(x)的最小值为g($\frac{t+1}{2}$)=$-\frac{(t+1)^{2}}{4}$.
∴若存在t∈(0,2),对于任意x∈[-1,2],不等式f(x)>x+a都成立,
故只需存在t∈(0,2),使得$\left\{\begin{array}{l}{-\frac{(t+1)^{2}}{4}>a}\\{-t>a}\end{array}\right.$,即$\left\{\begin{array}{l}{a≤-\frac{1}{4}}\\{a≤0}\end{array}\right.$,
∴实数a的取值范围是a$≤-\frac{1}{4}$.
故选:A.

点评 本题考查函数恒成立问题,考查了数学转化思想方法,理解题意是关键,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计).易拉罐的体积为162πml,设圆柱的高度为hcm,底面半径为rcm,且h≥6r.假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为m元/cm2,易拉罐上下底面的制造费用均为n元/cm2(m,n为常数,且0<3m<n).
(1)写出易拉罐的制造费用y(元)关于r(cm)的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时r(cm)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若$\frac{cosA}{cosB}=\frac{b}{a}=\frac{1}{2}$,$c=2\sqrt{5}$,则△ABC的面积等于(  )
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合下列角中,终边在y轴非正半轴上的是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=2x+a,若函数f(x)的图象过点(3,18),则a的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=a${\;}_{n+1}^{2}$-4n-1,且a1=1,公比大于1的等比数列{bn}满足b2=3,b1+b3=10.
(1)求证数列{an}是等差数列,并求其通项公式;
(2)若cn=$\frac{a_n}{{3{b_n}}}$,求数列{cn}的前n项和Tn
(3)在(2)的条件下,若cn≤t2+$\frac{4}{3}$t-2对一切正整数n恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的有(  )
(1)m?α,n?α,m∥β,n∥β⇒α∥β
(2)n∥m,n⊥α⇒m⊥α
(3)α∥β,m?α,n?β⇒m∥n
(4)m⊥α,m⊥n⇒n∥α
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.把正数排列成如图甲的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙的三角形数阵,现把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2017,则n=1031.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率e=$\frac{{\sqrt{3}}}{2}$,左、右焦点分别为F1、F2,A是椭圆在第一象限上的一个动点,圆C与F1A的延长线,F1F2的延长线以及线段AF2都相切,M(2,0)为一个切点.
(1)求椭圆方程;
(2)设$N({\frac{{\sqrt{3}}}{2},0})$,过F2且不垂直于坐标轴的动点直线l交椭圆于P,Q两点,若以NP,NQ为邻边的平行四边形是菱形,求直线l的方程.

查看答案和解析>>

同步练习册答案