| A. | 1 | B. | 2 | C. | $\sqrt{5}$ | D. | 4 |
分析 由正弦定理可得:sinAcosA=sinBcosB,C=$\frac{π}{2}$.在R△ABC中,由a2+b2=c2=20,$\frac{b}{a}=\frac{1}{2}$,解得:a,b,即可求得△ABC的面积
解答 解:解:∵$\frac{cosA}{cosB}=\frac{b}{a}$,由正弦定理可得:$\frac{cosA}{cosB}=\frac{sinB}{sinA}$,
即sinAcosA=sinBcosB,
可得sin2A=sin2B,解得2A=2B或2A+2B=π,
即A=B或C=$\frac{π}{2}$.
又∵$\frac{b}{a}=\frac{1}{2}$,∴C=$\frac{π}{2}$,
在R△ABC中,由a2+b2=c2=20,$\frac{b}{a}=\frac{1}{2}$,
解得:a=4,b=2
则△ABC的面积等于$\frac{1}{2}ab=4$.
故选:D.
点评 本题考查了正弦定理,三角形面积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | $({\frac{1}{2},+∞})$ | C. | $({0,\frac{1}{2}})∪({2,+∞})$ | D. | $({\frac{1}{2},1})∪({1,2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $a≤-\frac{1}{4}$ | B. | a≤0 | C. | $a≤\frac{1}{4}$ | D. | a≤2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2.4 | B. | 1.8 | C. | 1.6 | D. | 1.2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com