【题目】某兴趣小组有男生20人,女生10人,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则
①该抽样可能是系统抽样;
②该抽样可能是随机抽样:
③该抽样一定不是分层抽样;
④本次抽样中每个人被抽到的概率都是
.
其中说法正确的为( )
A.①②③B.②③C.②③④D.③④
【答案】A
【解析】
①该抽样可以是系统抽样;②因为总体个数不多,容易对每个个体进行编号,因此该抽样可能是简单的随机抽样;③若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,且分层抽样的比例相同,该抽样不可能是分层抽样;④分别求出男生和女生的概率,故可判断出真假.
①总体容量为30,样本容量为5,第一步对30个个体进行编号,如男生1~20,女生21~30;
第二步确定分段间隔
;第三步在第一段用简单随机抽样确定第一个个体编号
;
第四步将编号为
依次抽取,即可获得整个样本.故该抽样可以是系统抽样.因此①正确.
②因为总体个数不多,可以对每个个体进行编号,因此该抽样可能是简单的随机抽样,故②正确;
③若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,且分层抽样的比例相同,
但兴趣小组有男生20人,女生10人,抽取2男3女,抽的比例不同,故③正确;
④该抽样男生被抽到的概率
;女生被抽到的概率
,故前者小于后者.因此④不正确.
故选:A.
科目:高中数学 来源: 题型:
【题目】已知在
中,
,且
.
(1)求角
的大小;
(2)设数列
满足
,前
项和为
,若
,求
的值.
【答案】(1)
;(2)
或
.
【解析】试题分析:
(1)由题意结合三角形内角和为
可得
.由余弦定理可得
,,结合勾股定理可知
为直角三角形,
,
.
(2)结合(1)中的结论可得
.则
,
据此可得关于实数k的方程
,解方程可得
,则
或
.
试题解析:
(1)由已知
,又
,所以
.又由
,
所以
,所以
,
所以
为直角三角形,
,
.
(2)
.
所以
,
由
,得
,所以
,所以
,所以
或
.
【题型】解答题
【结束】
18
【题目】已知点
是平行四边形
所在平面外一点,如果
,
,
.(1)求证:
是平面
的法向量;
(2)求平行四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在高二年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高二年级学生中随机抽取180名学生,其中男生105名;在这180名学生中选择社会科学类的男生、女生均为45名.
(1)根据抽取的180名学生的调查结果,完成下面的2×2列联表.
(2)判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?
选择自然科学类 | 选择社会科学类 | 合计 | |
男生 | |||
女生 | |||
合计 |
参考公式:
,其中
.
P(K2≥k0) | 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
和椭圆
. 直线
与椭圆
交于不同的两点
.
(Ⅰ) 求椭圆
的离心率;
(Ⅱ) 当
时,求
的面积;
(Ⅲ)设直线
与椭圆
的另一个交点为
,当
为
中点时,求
的值 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,侧棱
底面
,
,
,
,外接球的球心为
,点
是侧棱
上的一个动点.有下列判断:①直线
与直线
是异面直线;②
一定不垂直于
; ③三棱锥
的体积为定值;④
的最小值为
.其中正确的序号是______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是一种反映和评价空气质量的方法,AQI指数与空气质量对应如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某城市2018年12月全月的AQI指数变化统计图:
![]()
根据统计图判断,下列结论正确的是( )
A. 整体上看,这个月的空气质量越来越差
B. 整体上看,前半月的空气质量好于后半个月的空气质量
C. 从AQI数据看,前半月的方差大于后半月的方差
D. 从AQI数据看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=
,求三棱锥E-ACD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为
,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com