精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线C:y2=4x,过焦点F斜率大于零的直线l交抛物线于A、B两点,且与其准线交于点D.
(Ⅰ)若线段AB的长为5,求直线l的方程;
(Ⅱ)在C上是否存在点M,使得对任意直线l,直线MA,MD,MB的斜率始终成等差数列,若存在求点M的坐标;若不存在,请说明理由.

【答案】解:(Ⅰ)焦点F(1,0)
∵直线l的斜率不为0,所以设l:x=my+1,
A(x1 , y1),B(x2 , y2
得y2﹣4my﹣4=0,
y1+y2=4m,y1y2=﹣4,




∴直线l的斜率k2=4,
∵k>0,∴k=2,
∴直线l的方程为2x﹣y﹣2=0.
(Ⅱ)设M(a2 , 2a),
kMA= =
同理,kMB= ,kMD=
∵直线MA,MD,MB的斜率始终成等差数列,
∴2 = + 恒成立;
=
又∵y1+y2=4m,y1y2=﹣4,
∴(a2﹣1)(m+ )=0,
∴a=±1,
∴存在点M(1,2)或M(1,﹣2),使得对任意直线l,
直线MA,MD,MB的斜率始终成等差数列.

【解析】(Ⅰ)设l:x=my+1,A(x1 , y1),B(x2 , y2),则联立方程化简可得y2﹣4my﹣4=0,从而可得 ,从而求直线l的方程;
(Ⅱ)设M(a2 , 2a),则kMA= = ,kMB= ,kMD= ,则 = ,从而可得(a2﹣1)(m+ )=0,从而求出点M的坐标.
【考点精析】利用一般式方程对题目进行判断即可得到答案,需要熟知直线的一般式方程:关于的二元一次方程(A,B不同时为0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等比数列,首项a1=1,公比q0,其前n项和为Sn,且S1+a1S3+a3S2+a2成等差数列.

)求数列{an}的通项公式;

)若数列{bn}满足Tn为数列{bn}的前n项和,若Tn≥m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 对任意n∈N* , 点(an , Sn)都在函数 的图象上.
(1)求数列{an}的首项a1和通项公式an
(2)若数列{bn}满足 ,求数列{bn}的前n项和Tn
(3)已知数列{cn}满足 .若对任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[(﹣2,0)∪(0,2)]上的奇函数,当x>0,f(x)的图象如图所示,那么f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一块三角形地的一角开辟为水果园,已知角 的长度均大于200米,现在边界处建围墙,在处围竹篱笆.

(1)若围墙总长度为200米,如何可使得三角形地块面积最大?

(2)已知竹篱笆长为米, 段围墙高1米, 段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:xA,且A={x|a﹣1xa+1},命题q:xB,且B={x|x2﹣4x+3≥0}

(Ⅰ)若A∩B=A∪B=R,求实数a的值;

(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设向量 ,其中的两个内角.

(1)若,求证: 为直角;

2)若,求证: 为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求ab的值;

2)如果是函数的两个零点, 为函数的导数,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,点边的中点,将沿折起,使平面平面,连接 ,得到如图所示的几何体.

(Ⅰ)求证: 平面

(Ⅱ)若 与其在平面内的正投影所成角的正切值为,求点到平面的距离.

查看答案和解析>>

同步练习册答案