精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,设向量 ,其中的两个内角.

(1)若,求证: 为直角;

2)若,求证: 为锐角.

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)借助平面向量的坐标形式的数量积公式建立方程,然后运用诱导公式分析推证;(2)借助平面向量的坐标形式的数量积公式建立方程,即,也即然后运用两角和的正切公式分析推证,即

(1)易得

因为,所以,即.

因为,且函数内是单调减函数,

所以,即为直角.

(2)因为,所以

.

因为是三角形内角,所以

于是,因而中恰有一个是钝角,∴

从而

所以,即证为锐角

注:(2)解得后,得异号,

于是,在中,有两个钝角,这与三角形内角和定理矛盾,不可能

于是必有,即证为锐角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )+f( )等于(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且

(1)若∠BCD=60°,求证:BC⊥EF;
(2)若∠CBA=60°,求直线AF与平面FBE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C:y2=4x,过焦点F斜率大于零的直线l交抛物线于A、B两点,且与其准线交于点D.
(Ⅰ)若线段AB的长为5,求直线l的方程;
(Ⅱ)在C上是否存在点M,使得对任意直线l,直线MA,MD,MB的斜率始终成等差数列,若存在求点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中 是自然对数的底数.

(1)当时,求曲线处的切线方程;

2求函数的单调减区间;

3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.

(1)求证:数列为等比数列;

2)设数列的前项和为,求证: 为定值;

3)判断数列中是否存在三项成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题中

非零向量满足,则的夹角为

0的夹角为锐角的充要条件;

必定是直角三角形;

④△ABC的外接圆的圆心为O,半径为1,若,,则向量在向量方向上的投影为.

以上命题正确的是 __________ (注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体是由棱台 和棱锥拼接而成的组合体,其底面四边形是边长为 的菱形,且 平面

1)求证:平面 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中 为自然对数的底数, …….

1)令,求的单调区间;

2)已知处取得极小值,求实数的取值范围.

查看答案和解析>>

同步练习册答案