精英家教网 > 高中数学 > 题目详情
7.已知直线l1:2x+a2y+1=0,l2:ax-y-3=0,a=2是直线l1与直线l2垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.非充分非必要条件

分析 根据充分条件和必要条件的定义结合直线垂直的等价条件进行判断即可.

解答 解:若直线l1与直线l2垂直,则满足2a-a2=0,
解得a=0或a=2,
故a=2是直线l1与直线l2垂直的充分不必要条件,
故选:A

点评 本题主要考查充分条件和必要条件的判断,根据直线垂直的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知y=f(x)是R上的奇函数,又是周期为2的周期函数,当x∈[0,1]时,f(x)=2x-1,求f(1.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知A(0,3),B(0,2),求$\overrightarrow{a}$使$\overrightarrow{a}$=($\overrightarrow{AB}+\overrightarrow{MB}$)+($\overrightarrow{BO}+\overrightarrow{OM}$);
(2)已知α是三角形的内角,且cosα+sinα=$\frac{1}{5}$,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≥0}\\{3-2x,x<0}\end{array}\right.$,求:
(1)f(-$\frac{1}{2}$);
(2)f($\sqrt{2}$);
(3)f(t-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sinα+cosα=$\sqrt{2}$,α∈(0,$\frac{π}{2}$),则tanα=(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线ax+by+1=0与直线4x+3y+5=0平行,且直线ax+by+1=0在y轴上的截距为$\frac{1}{3}$,则a+b=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;
(Ⅱ)令g(x)=f (x+$\frac{π}{3}$)-1,当x∈[-$\frac{π}{6}$,$\frac{π}{3}$]时,若存在g(x)<a-2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.四面体ABCD中,公共顶点A的三条棱两两相互垂直,且其长分别为1,$\sqrt{6}$,3,若它的四个顶点在同一球面上,则此球的表面积为(  )
A.B.C.3$\sqrt{3}$πD.16π

查看答案和解析>>

同步练习册答案