| A. | a∈(-∞,$\frac{1}{6}$) | B. | a∈(-$\frac{1}{2}$,+∞) | C. | a∈(-$\frac{1}{2}$,$\frac{1}{6}$) | D. | a∈($\frac{1}{2}$,+∞) |
分析 求出函数的导数,问题转化为函数f(x)=ax2-4ax-lnx与x轴在(1,3)有交点,通过讨论a的范围,结合二次函数的性质判断即可.
解答 解:f′(x)=2ax-4a-$\frac{1}{x}$=$\frac{2{ax}^{2}-4ax-1}{x}$,
若f(x)在(1,3)上不单调,
令g(x)=2ax2-4ax-1,
则函数g(x)=2ax2-4ax-l与x轴在(1,3)有交点,
a=0时,显然不成立,
a≠0时,只需$\left\{\begin{array}{l}{△=1{6a}^{2}+8a≥0}\\{g(1)g(3)<0}\end{array}\right.$,
解得:a>$\frac{1}{2}$,
故选:D.
点评 本题考查了函数的单调性问题,考查导数的应用以及二次函数的性质,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (0,1] | C. | (-∞,0)∪[1,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | [1,2] | C. | (-1,3] | D. | (-∞,-1)∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com