精英家教网 > 高中数学 > 题目详情
19.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$且目标函数z=y-x的最大值是4,则k等于$\frac{3}{4}$.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$作出可行域如图,因为直线kx+y-3k=0过定点(3,0),所以只有目标函数z=y-x过A时取最大值是4,
由$\left\{\begin{array}{l}{x+y-2=0}\\{y-x=4}\end{array}\right.$,解得A(-1,3)此时,-k=$\frac{3-0}{-1-3}$=-$\frac{3}{4}$,所以k=$\frac{3}{4}$;
故答案为:$\frac{3}{4}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=ax2-4ax-lnx,则f(x)在(1,3)上不单调的一个充分不必要条件是(  )
A.a∈(-∞,$\frac{1}{6}$)B.a∈(-$\frac{1}{2}$,+∞)C.a∈(-$\frac{1}{2}$,$\frac{1}{6}$)D.a∈($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设曲线y=$\frac{x+1}{x-1}$在点(2,3)处的切线与直线ax+y+1=0平行,则a=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.补全函数y=$\left\{\begin{array}{l}{\frac{π}{2}x-5,(x>0)}\\{0,(x=0)}\\{\frac{π}{2}x+3,(x<0)}\end{array}\right.$,的流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=sin({wx+ϕ}),({w>0,|ϕ|<\frac{π}{2}})$,其相邻两个最高点之间的距离是π,且函数$f({x+\frac{π}{12}})$是偶函数,下列判断正确的是(  )
A.函数f(x)的最小正周期为2π
B.函数f(x)在$[{\frac{3π}{4},π}]$上单调递增
C.函数f(x)的图象关于直线$x=-\frac{7π}{12}$对称
D.函数f(x)的图象关于点$({\frac{π}{12},0})$对称-

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2x+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[$\begin{array}{l}{-\frac{π}{4}$,$\frac{π}{4}}\end{array}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)的定义域是[0,1],则函数f(2x)+f(x+$\frac{1}{3}$)的定义域为(  )
A.[-$\frac{1}{3}$,$\frac{2}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{2}$]C.[0,$\frac{1}{2}$]D.[0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,l1,l2是互相垂直的异面直线,MN是它们的公垂线段,点A,B在直线l1上,且位于M点的两侧,C在l2上,AM=BM=NM=CN
(1)求证:异面直线AC与BN垂直;
(2)若四面体ABCN的体积VABCN=9,求异面直线l1,l2之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合M={x|$\sqrt{x-1}$>1},N={y|y=x+1,x≥-1},M∩N=(2,+∞).

查看答案和解析>>

同步练习册答案