精英家教网 > 高中数学 > 题目详情
8.如图所示,l1,l2是互相垂直的异面直线,MN是它们的公垂线段,点A,B在直线l1上,且位于M点的两侧,C在l2上,AM=BM=NM=CN
(1)求证:异面直线AC与BN垂直;
(2)若四面体ABCN的体积VABCN=9,求异面直线l1,l2之间的距离.

分析 (1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;
(2)判断异面直线的距离,利用体积公式求解即可.

解答 解:(1)证明:由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.
由已知MN⊥l1,AM=MB=MN,
可知AN=NB且AN⊥NB.
又AN为AC在平面ABN内的射影.
∴AC⊥NB
(2)∵AM=BM=NM=CN,MN是它们的公垂线段,
就是异面直线l1,l2之间的距离,
由中垂线的性质可得AN=BN,四面体ABCN的体积VABCN=9,
可得:VABCN=9=$\frac{1}{3}×\frac{1}{2}AB×MN×CN$=$\frac{1}{3}$MN3
∴MN=3.
异面直线l1,l2之间的距离为3.

点评 本题主要考查了直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$且目标函数z=y-x的最大值是4,则k等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数$f(x)={({\frac{1}{3}})^{|{x-2}|}}$,则f(x)的单调递减区间是(  )
A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线y2=2x的焦点坐标是($\frac{1}{2}$,0),准线方程是x=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=1+log2x(x≥1)的反函数f-1(x)=2x-1(x≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a∈R,函数f(x)=a+$\frac{1}{|x|}$
(1)当a=1时,解不等式f(x)≤2x;
(2)若关于x的方程f(x)-2x=0在区间[-2,-1]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{{\sqrt{x-3}}}{x-4}$的定义域是[3,4)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={0,1,2},集合B={-1,2},则A∪B=(  )
A.{-1,0,1,2}B.{2}C.{-1,1,2}D.{-1,0,1,2,2}

查看答案和解析>>

同步练习册答案