分析 连接AC,BD交于点O,连接OE,OP,先证明∠PAO即为PA与面ABCD所成的角,即可得出结论.
解答
解:连接AC,BD交于点O,连接OE,OP
因为E为PC中点,所以OE∥PA,
所以∠OEB即为异面直线PA与BE所成的角.
因为四棱锥P-ABCD为正四棱锥,
所以PO⊥平面ABCD,
所以AO为PA在面ABCD内的射影,所以∠PAO即为PA与面ABCD所成的角,即∠PAO=60°,
因为PA=2,所以OA=OB=1,OE=1.
△PBC中,PB=PC=2,BC=$\sqrt{2}$,∴2(4+2)=4+4BE2,∴BE=$\sqrt{2}$,
∴OE2+OB2=BE2,
所以在直角三角形EOB中∠OEB=45°,即面直线PA与BE所成的角为45°.
故答案为为45°.
点评 本题考查异面直线所成角,考查线面垂直,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a∈(-∞,$\frac{1}{6}$) | B. | a∈(-$\frac{1}{2}$,+∞) | C. | a∈(-$\frac{1}{2}$,$\frac{1}{6}$) | D. | a∈($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com