| A. | [-$\frac{1}{3}$,$\frac{2}{3}$] | B. | [-$\frac{1}{3}$,$\frac{1}{2}$] | C. | [0,$\frac{1}{2}$] | D. | [0,$\frac{1}{3}$] |
分析 由函数f(x)的定义域可得0≤2x≤1,且0≤x+$\frac{1}{3}$≤1,求出x的范围就是函数f(2x)+f(x+$\frac{1}{3}$)的定义域..
解答 解:因为函数f(x)的定义域为[0,1],
则0≤2x≤1,且0≤x+$\frac{1}{3}$≤1,即0≤x≤$\frac{1}{2}$,且-$\frac{1}{3}$≤x≤$\frac{2}{3}$,
解得0≤x≤$\frac{1}{2}$,
所以函数f(2x)+f(x+$\frac{1}{3}$)的定义域为[0,$\frac{1}{2}$].
故选:C.
点评 本题考查抽象函数的定义域,注意函数的自变量的取值范围,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2] | B. | [2,+∞) | C. | [-2,+∞) | D. | (-∞,-2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com