分析 由g(x)=f(x)-mx-m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.
解答 解:由g(x)=f(x)-mx-m=0,即f(x)=m(x+1),
分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:
由图象可知f(1)=1,h(x)表示过定点A(-1,0)的直线,
当h(x)过(1,1)时,m=$\frac{1}{2}$,此时两个函数有两个交点,![]()
此时满足条件的m的取值范围是0<m≤$\frac{1}{2}$,
当h(x)过(0,-2)时,h(0)=-2,解得m=-2,此时两个函数有两个交点,
当h(x)与f(x)相切时,两个函数只有一个交点,此时 $\frac{1}{x+3}x-3$=m(x+1)即m(x+1)2+3(x+1)-1=0,
当m=0时,只有1解,当m≠0,由△=9+4m=0得m=-$\frac{9}{4}$,此时直线和f(x)相切,
∴要使函数有两个零点,则$-\frac{9}{4}<m≤-2或0<m≤\frac{1}{2}$.
故答案为:(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]
点评 本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为2π | |
| B. | 函数f(x)在$[{\frac{3π}{4},π}]$上单调递增 | |
| C. | 函数f(x)的图象关于直线$x=-\frac{7π}{12}$对称 | |
| D. | 函数f(x)的图象关于点$({\frac{π}{12},0})$对称- |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{3}$,$\frac{2}{3}$] | B. | [-$\frac{1}{3}$,$\frac{1}{2}$] | C. | [0,$\frac{1}{2}$] | D. | [0,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a、b是两条异面直线且a∥α,b∥α,a∥β,b∥β | |
| B. | α内有三个不共线点A、B、C到β的距离相等 | |
| C. | a、b是α内两条直线,且a∥β,b∥β | |
| D. | α、β都平行于直线a、b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com