精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的前n项和为Sn,且3Sn+an-3=0,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$,求Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn≥$\frac{504}{1009}$成立的n的最小值.

分析 (1)通过3Sn+an-3=0与3Sn-1+an-1-3=0作差,进而可知数列{an}是首项为$\frac{3}{4}$、公比为$\frac{1}{4}$的等比数列,利用公式计算即得结论;
(2)通过(1)及3Sn+an-3=0计算可知bn=-n-1,裂项可知$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,进而并项相加即得结论.

解答 解:(1)∵3Sn+an-3=0,
∴当n=1时,3S1+a1-3=0,即a1=$\frac{3}{4}$,
又∵当n≥2时,3Sn-1+an-1-3=0,
∴3an+an-an-1=0,即an=$\frac{1}{4}$an-1
∴数列{an}是首项为$\frac{3}{4}$、公比为$\frac{1}{4}$的等比数列,
故其通项公式an=$\frac{3}{4}$•$\frac{1}{{4}^{n-1}}$=3•$\frac{1}{{4}^{n}}$;
(2)由(1)可知,1-Sn+1=$\frac{1}{3}$an+1=$\frac{1}{{4}^{n+1}}$,
∴bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$=-n-1,
∵$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$
=$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$,
由Tn≥$\frac{504}{1009}$可知,$\frac{1}{2}$-$\frac{1}{n+2}$≥$\frac{504}{1009}$,
化简得:$\frac{1}{n+2}$≤$\frac{1}{2018}$,解得:n≥2016,
故满足条件的n的最小值为2016.

点评 本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知e为自然对数的底数,函数f(x)=$\left\{\begin{array}{l}{4x-4,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,则方程f(x)=ax恰有两个不同的实数解时,实数a的取值范围是(  )
A.(e,4]B.(4,+∞)C.(e,+∞)D.($\frac{1}{e}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知焦点在x轴双曲线的一条渐近线的倾斜角$\frac{π}{6}$,则此双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.$\frac{2\sqrt{6}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是一个几何体的三视图,则此几何体的侧面积为$\sqrt{2}π+\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“?x∈(-1,+∞),ln(x+1)<x”的否定是(  )
A.?x∉(-1,+∞),ln(x+1)<xB.?x0∉(-1,+∞),ln(x0+1)<x0
C.?x∈(-1,+∞),ln(x+1)≥xD.?x0∈(-1,+∞),ln(x0+1)≥x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧$\widehat{BD}$于点G,交弦BD于点E,F为线段BC的中点.

(Ⅰ)证明:平面OGF∥平面CAD.
(Ⅱ)若二面角C-AB-D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求四面体FCOG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如图所示,则这个正三棱柱的侧棱长和底面边长分别为2,4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax-a)的值域为R,且f(x)在(-2,1-$\sqrt{2}$)上为增函数.则a的取值范围为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在各项均为正数的等比数列{an}中,前n项和为Sn,若S4=11,S8=187,则公比q的值是2.

查看答案和解析>>

同步练习册答案