精英家教网 > 高中数学 > 题目详情
2.如图是一个几何体的三视图,则此几何体的侧面积为$\sqrt{2}π+\frac{\sqrt{7}}{2}$.

分析 由已知中的三视图,可知该几何体是一个以俯视图为底面的锥体,分别计算半个圆锥的侧面积和两个等腰三角形的面积,可得答案.

解答 解:由已知中的三视图,可知该几何体是一个以俯视图为底面的锥体,底面是半径为1的半圆和斜边为1的等腰直角三角形,所以几何体的侧面是底面半径为1,高为1的半个圆锥,和底面为等腰直角三角形高为1的三棱锥组合而成,
所以侧面积为$\frac{1}{2}$×2$\sqrt{2}$π+2×$\frac{1}{2}$×1×$\frac{\sqrt{7}}{2}$×2=$\sqrt{2}$π+$\frac{\sqrt{7}}{2}$,
故答案为:$\sqrt{2}π+\frac{\sqrt{7}}{2}$.

点评 本题考查的知识点是由三视图求侧面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,则下列说法正确的(  )
A.?a∈(2,4),输出的i的值为5B.?a∈(4,5),输出的i的值为5
C.?a∈(3,4),输出的i的值为5D.?a∈(2,4),输出的i的值为5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图给出的是计算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一个程序框图,则判断框内应填入的条件是(  )
A.i≤1008?B.i>1008?C.i≤1009?D.i>1009?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在三棱锥P-ABC中,面PAC⊥面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段PC上的点,若MN=$\sqrt{2}$,则三棱锥A-MNB的体积为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的S等于(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,已知在四棱锥P-ABCD中,底面四边形ABCD是直角梯形,BC∥AD,BC⊥CD,AD=CD=2BC=4,△PAD是等边三角形,平面PAD⊥平面ABCD,E,F分别是PD,PC的中点,M为CD上一点.
(1)求证:平面BEF⊥平面PAD;
(2)求三棱锥M-EFB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且3Sn+an-3=0,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$,求Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn≥$\frac{504}{1009}$成立的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.${(x-\frac{1}{{\sqrt{x}}})^6}(2{x^3}+1)$的常数项是(  )
A.15B.17C.-15D.-17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,1),且圆x2+y2=a2被直线x-y-$\sqrt{2}$=0截得的弦长为2
(1)求椭圆C的标准方程;
(2)已知k≠0,动直线y=k(x-1)与椭圆C的两个交点分别为A,B,问:在x轴上是否存在定点M,使得$\overrightarrow{MA}$$•\overrightarrow{MB}$为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案