精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,其中错误命题有(

A.单位向量都相等

B.中,若,则一定大于

C.若数列的前项和为均为常数),则数列一定为等差数列;

D.若数列是等比数列,则数列也是等比数列

【答案】ACD

【解析】

A,利用单位向量的定义分析判断;B,利用正弦定理分析判断得解;C,利用等差数列的性质分析判断得解;D,利用等比数列的性质分析判断得解.

A. 单位向量不一定相等,因为向量既有大小,又有方向,所以该命题错误;

B. 中,若,所以所以,则一定大于,所以该命题正确;

C. 若数列的前项和为均为常数),由等差数列性质得,当时,数列一定为等差数列;当时,数列从第二项起,是等差数列,所以该命题错误;

D. 若数列是等比数列,则数列不一定是等比数列,如当公比时,为偶数,均为零,所以该命题错误.

故选:ACD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知点是圆心为半径为的半圆弧上从点数起的第一个三等分点,点是圆心为半径为的半圆弧的中点,分别是两个半圆的直径,,直线与两个半圆所在的平面均垂直,直线共面.

1)求三棱锥的体积;

2)求直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,并按下表折扣分别累计计算:

可以享受折扣优惠金额

折扣率

不超过500元的部分

超过500元的部分

若某顾客在此商场获得的折扣金额为50元,则此人购物实际所付金额为  

A.1500元B.1550元C.1750元D.1800元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆),圆),若圆的一条切线与椭圆相交于两点.

(1)当 时,若点都在坐标轴的正半轴上,求椭圆的方程;

(2)若以为直径的圆经过坐标原点,探究是否满足,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若不等式时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足:.的前n项和为.

)求

)若 ,),求数列的前项和.

【答案】,=

【解析】

试题分析:)设出首项a1和公差d ,利用等差数列通项公式,就可求出,再利用等差数列前项求和公式就可求出;()由()知,再利用 ,),就可求出,再利用错位相减法就可求出.

试题解析:)设等差数列{an}的首项为a1,公差为d

, 解得

,

,

= (1- + - ++-)

=(1-) =

所以数列的前项和= .

考点:1.等差数列的通项公式; 2. 等差数列的前n项和公式; 3.裂项法求数列的前n项和公式

型】解答
束】
18

【题目】在如图所示的几何体中,四边形是等腰梯形, 平面

)求证: 平面

)求二面角的余弦值.

)在线段(含端点)上,是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

5

0

1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;

2)将图象上所有点向左平行移动个单位长度,并把图象上所有点的横坐标缩短为原来的(纵坐标不变),得到的图象.图象的一个对称中心为,求的最小值;

3)在(2)条件下,求上的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图,在多面体中, 是正方形, 平面, 平面, ,点为棱的中点.

(1)求证:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.一个人打靶,打了10发子弹,有7发子弹中靶,因此这个人中靶的概率为

B.某地发行福利彩票,其回报率为,有个人花了100元钱买彩票,一定会有47元回报

C.根据最小二乘法求得的回归直线一定经过样本中心点

D.大量试验后,可以用频率近似估计概率.

查看答案和解析>>

同步练习册答案