精英家教网 > 高中数学 > 题目详情
如图,在四面体ABCD中,E、F分别是AD、BC中,AB=CD=2,EF=
2
.求异面直线中AB、CD所成的角.
考点:异面直线及其所成的角
专题:空间角
分析:取AC中点G,连接EG、FG,易得∠EGF或其补角即为异面直线中AB、CD所成的角,在△EGF中,由勾股定理可得.
解答: 解:取AC中点G,连接EG、FG,
∵FG为△ABC的AB边中位线,
∴FG∥AB,且FG=
1
2
AB=1,
同理可得EG∥CD,且EG=
1
2
CD=1,
∴∠EGF或其补角即为异面直线中AB、CD所成的角,
在△EGF中,FG2+EG2=EF2,∴∠EGF=90°,
∴异面直线中AB、CD所成的角为90°
点评:本题考查异面直线所成的角,涉及三角形的中位线和勾股定理,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ≤π)的图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设△ABC的内角A,B,C,所对的边分别为a,b,c,若a≥b=
3
,f(
B
2
)=
6
+
2
2
,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an},{bn}中a1=2,an=an-1+2n,且an,bn,an+1成等差数列.
(1)求{an},{bn}的通项公式;
(2)证明:
1
a1+b1
+
1
a2+b2
+…+
1
an+bn
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等比数列{an}的前n项和,且a1+a4=-
7
16
,且对于任意的n∈N*,有Sn、Sn+2、Sn+1成等差数列,{bn}的前n项和Tn=
1
2
n2+
k
2
n(n∈N*,k>0),且Tn的最小值为1.
(1)求数列{an}和{bn}的通项公式;
(2)对任意m∈N*,将数列{bn}中落入区间(2m+
9
2
,4m+
9
2
)内的个数记为cm,求数列{cm}的前m项和;
(3)记Pn=|
b1
a1
|+|
b2
a2
|+|
b3
a3
|+…+|
bn
an
|,若(n-1)2≤m(Pn-n-1)对于n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四面体O-ABC中,M、N分别是OA、BC的中点,P是MN上(靠近点M)的三等分点,其中OA=OB=OC=1,∠AOC=∠AOB=∠BOC=60°,求异面直线OP与AB所成角的余弦值.(用向量法)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
3x
2
,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
].
(1)求
a
b
及|
a
+
b
|;
(2)若f(x)=
a
b
-2λ|
a
+
b
|的最小值为-7,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=
x2-x,x∈[0,1)
-(
1
2
)|x-
3
2
|
,x∈[1,2)
则当x∈[-4,-2)时,函数f(x)的最小值为(  )
A、-
1
16
B、-
1
4
C、-
1
2
D、-
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)求三棱锥P-ACB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
1+tanα
1-tanα

查看答案和解析>>

同步练习册答案