精英家教网 > 高中数学 > 题目详情
20.若$\frac{1+2i}{1+i}$=a+bi(a,b∈R),则loga(b+1)的值为1.

分析 由复数相等可得ab的值,代入计算对数值可得.

解答 解:∵$\frac{1+2i}{1+i}$=a+bi,∴$\frac{(1+2i)(1-i)}{(1+i)(1-i)}$=a+bi,
∴$\frac{1-i+2i-2{i}^{2}}{1-{i}^{2}}$=a+bi,即$\frac{3+i}{2}$=a+bi,
∴a=$\frac{3}{2}$,b=$\frac{1}{2}$,∴loga(b+1)=1,
故答案为:1.

点评 本题考查复数相等的充要条件,涉及对数的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知a>0,b>0,c>0,设函数f(x)=|x-b|+|x+c|+a,x∈R
(Ⅰ)若a=b=c=1,求不等式f(x)<5的解集;
(Ⅱ)若函数f(x)的最小值为1,证明:$\frac{1}{a+b}$+$\frac{4}{b+c}$+$\frac{9}{c+a}$≥18(a+b+c)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-1=0},集合B={x|x2-ax+1=0},若集合A与集合B的元素个数相同,则实数a的取值为(  )
A.a>2或a<-2B.a=2C.a=-2D.a=±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的函数f(x)满足f(x)=-f(x+$\frac{5}{2}$),且f(1)=2,则f(2016)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)=$\frac{{4}^{x}-1}{{2}^{x+1}}$-2x+1,当f(-m)=$\sqrt{2}$时,则f(m)=(  )
A.-$\sqrt{2}$B.2+$\sqrt{2}$C.2-$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{x+a}{{x}^{2}+1}$是定义在区间[-1,1]上的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在[-1,1]上的单调性,并证明;
(3)解不等式:f(5x-1)<f(6x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.集合A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若集合A∩B=∅,则实数a的取值范围是a<-1或a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将f(x)的图象向右平移$\frac{π}{6}$,再将所得图象每个点纵坐标不变,横坐标伸长为原来的2倍得到y=g(x)的图象,则函数y=g(x)在区间[-$\frac{π}{3}$,$\frac{π}{18}$]上值域为(  )
A.[-2,-1]B.[-$\sqrt{2}$,-1]C.[-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$]D.[-1,-$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知|x-3|+$\sqrt{y-1}$+(z-4)2=0,求x,y,z的值.

查看答案和解析>>

同步练习册答案