精英家教网 > 高中数学 > 题目详情

【题目】(1)在中,内角的对边分别为,且,证明:

(2)已知结论:在直角三角形中,若两直角边长分别为,斜边长为,则斜边上的高.若把该结论推广到空间:在侧棱互相垂直的四面体中,若三个侧面的面积分别为,底面面积为,则该四面体的高之间的关系是什么?(用表示

【答案】(1)见解析.

(2) .

【解析】分析:(1)首先根据题中的条件,求得,从而可以将所要证明的式子转化,应用分析法证得结果;

(2)根据题中的条件,类比着平面三角形的面积,可以推出空间几何体三棱锥的体积对应的结果,在解题的过程中,注意将三棱锥的侧面面积分别写出来,应用体积公式以及各个方程之间的关系,从而求得结果.

详解:(1)证明:由,得,则.

要证

只需证

即证

只需证,即证.

显然成立,故.

(2)解:记该四面体的三条侧棱长分别为

不妨设

于是

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:

喜欢数学

不喜欢数学

总计

30

45

25

45

总计

90

(1)求①②③④处分别对应的值;

(2)能有多大把握认为“高中生的性别与喜欢数学”有关?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且 .固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.
(Ⅰ)求曲线Γ的方程;
(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=ex+2x2-3x.

(1)求证:函数f (x)在区间[0,1]上存在唯一的极值点.

(2)当x时,若关于x的不等式f (x)≥ x2+(a-3)x+1恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满万元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次装有个幸运号、个吉祥号的一个摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打折,若摇出个幸运号则打折;若摇出个幸运号则打折;若没有摇出幸运号则不打折.

(1)若某型号的车正好万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;

(2)若你评优看中一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合是满足下列条件的函数的全体:在定义域内存在实数,使得成立.

)判断幂函数是否属于集合?并说明理由;

)设

i)当时,若,求的取值范围;

ii)若对任意的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为 = x+ ,已知 xi=225, yi=1600, =4,该班某学生的脚长为24,据此估计其身高为(  )
A.160
B.163
C.166
D.170

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程为

(1)当时,判断直线与圆的关系

2)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 : 过点的直线交抛物线两点,设

(1)若点 关于轴的对称点为,求证:直线经过抛物线 的焦点

(2)若求当最大时,直线的方程.

查看答案和解析>>

同步练习册答案