精英家教网 > 高中数学 > 题目详情

【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:

喜欢数学

不喜欢数学

总计

30

45

25

45

总计

90

(1)求①②③④处分别对应的值;

(2)能有多大把握认为“高中生的性别与喜欢数学”有关?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

【答案】(1)见解析;(2)见解析

【解析】分析:(1)根据列联表的特征,可得到①②③④处分别对应的值;(2)由列联表中的数据,利用公式求得与邻界值比较,即可得到结论.

详解(1)①②③④处分别对应的值分别为15,20,50,40;

(2)∵ ,

,

∴ 有超过的把握,认为“高中生的性别与喜欢数学”有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且 . (Ⅰ)求点N的轨迹C的方程;
(Ⅱ)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则kAD+kAE是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}中, S2=16,且成等比数列.

(1)求数列{an}的通项公式;

(2)求数列{|an|}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,函数恒有意义,求实数的取值范围;

是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是函数)图象上的任意两点,且角的终边经过点,若时,的最小值为

1)求函数的解析式;

2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线 .以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同四点,这四点在上的排列顺次为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在中,内角的对边分别为,且,证明:

(2)已知结论:在直角三角形中,若两直角边长分别为,斜边长为,则斜边上的高.若把该结论推广到空间:在侧棱互相垂直的四面体中,若三个侧面的面积分别为,底面面积为,则该四面体的高之间的关系是什么?(用表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在中,内角的对边分别为,且,证明:

(2)已知结论:在直角三角形中,若两直角边长分别为,斜边长为,则斜边上的高.若把该结论推广到空间:在侧棱互相垂直的四面体中,若三个侧面的面积分别为,底面面积为,则该四面体的高之间的关系是什么?(用表示

查看答案和解析>>

同步练习册答案