精英家教网 > 高中数学 > 题目详情

【题目】已知点是函数)图象上的任意两点,且角的终边经过点,若时,的最小值为

1)求函数的解析式;

2)当时,不等式恒成立,求实数的取值范围.

【答案】1f(x)=2sin(3x-);(2[++]k∈Z;(3[+).

【解析】

试题(1)由题意,先求,根据的范围,可求的值,再求出函数的周期,再利用周期公式求出的值,从而可求函数解析式;(2)由的范围,求出的范围,由正弦函数的性质可得值域;(3)求出,分离参数可得,求出不等式右侧最小值即可.

试题解析:(1)角的终边经过点

,∴.

时,的最小值为,得,即,∴

.

(2)∵,∴,故值域为.

(3)当时,,于是,等价于,由,得的最小值为

所以,实数m的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆经过点,,圆心在直线

(1)求圆的标准方程;

(2)若直线与圆C相切且与轴截距相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=
(1)令N(x)=(1+x)2﹣1+ln(1+x),判断并证明N(x)在(﹣1,+∞)上的单调性,并求N(0);
(2)求f(x)在定义域上的最小值;
(3)是否存在实数m,n满足0≤m<n,使得f(x)在区间[m,n]上的值域也为[m,n]? (参考公式:[ln(1+x)′]=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:,直线

(1)若直线被圆C截得的弦长为 ,求实数的值;

(2)当t =1时,由直线上的动点P引圆C的两条切线,若切点分别为A,B,则直线AB是否恒过一个定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,为线段的垂直平分线,交与点上异于的任意一点.

的值;

判断的值是否为一个常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:

喜欢数学

不喜欢数学

总计

30

45

25

45

总计

90

(1)求①②③④处分别对应的值;

(2)能有多大把握认为“高中生的性别与喜欢数学”有关?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示大于的整数的十位数,例如.已知都是大于的互不相等的整数,现有如下个命题:

①若,则;②

③若是质数,则也是质数;④若成等差数列,则可能成等比数列.

其中所有的真命题为( )

A. B. ③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从圆C:(x+1)2+(y﹣2)2=2外一点P(x1 , y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,则当|PM|取最小值时点P的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满万元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次装有个幸运号、个吉祥号的一个摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打折,若摇出个幸运号则打折;若摇出个幸运号则打折;若没有摇出幸运号则不打折.

(1)若某型号的车正好万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;

(2)若你评优看中一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

查看答案和解析>>

同步练习册答案