【题目】已知圆C:,直线:.
(1)若直线被圆C截得的弦长为 ,求实数的值;
(2)当t =1时,由直线上的动点P引圆C的两条切线,若切点分别为A,B,则直线AB是否恒过一个定点?若存在,求出该定点的坐标;若不存在,请说明理由.
【答案】(1)t =11;(2)
【解析】
(1)根据垂径定理列式求实数的值;(2)先根据切点A,B在以CP为直径的圆,再根据两圆方程得切点弦方程,最后根据动点P在直线上,确定切点弦过定点.
(1)圆C的方程可化为 ,
则圆心C到直线的距离为
又弦长为 ,则
即 ,解得t =11.
(2)当t =1时,圆C的方程为①
则圆心为C(3,5),半径 ,圆C与直线相离
假设在直线AB上存在一个定点满足条件,设动点P(m,n),由已知得PA⊥AC,PB⊥BC
则A,B在以CP为直径的圆(x﹣3)(x﹣m)+(y﹣5)(y﹣n)=0
即②
①﹣②得,直线AB的方程为(m﹣3)x+(n﹣5)y﹣3m﹣5n﹣6=0③
又点P(m,n)在直线上,则m+3n+12=0,即m=﹣3n﹣12,代入③式
得(﹣3n﹣15)x+(n﹣5)y+4n+30=0
即直线AB的方程为15x+5y﹣30+n(3x﹣y﹣4)=0
因为上式对任意n都成立,故 ,得
故直线AB恒过一个定点,定点坐标为
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;
(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于和,设线段的长分别为,证明是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1 , ∠BAC=90°,A1A⊥平面ABC,A1A= ,AB= ,AC=2,A1C1=1, = . (Ⅰ)证明:BC⊥平面A1AD
(Ⅱ)求二面角A﹣CC1﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某共享单车运营公司为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为元/辆和元/辆的、两款车型可供选择,按规定每辆单车最多使用年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各辆进行科学模拟测试,得到两款单车使用寿命频数表见下表.
经测算,平均每辆单车每年可以带来收入元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年.
(1)分别估计、两款车型使用寿命不低于年的概率;
(2)如果你是公司的负责人,以参加科学模拟测试的两款车型各辆单车产生利润的平均数为决策依据,你会选择采购哪款车型?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数且.
当时,函数恒有意义,求实数的取值范围;
是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,是函数(,)图象上的任意两点,且角的终边经过点,若时,的最小值为.
(1)求函数的解析式;
(2)当时,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业招聘大学毕业生,经过综合测试,录用了14名女生和6名男生,这20名学生的测试成绩如茎叶图所示(单位:分),记成绩不小于80分者为等,小于80分者为等.
(1)求女生成绩的中位数及男生成绩的平均数;
(2)如果用分层抽样的方法从等和等中共抽取5人组成“创新团队”,则从等和等中分别抽几人?
(3)在(2)问的基础上,现从该“创新团队”中随机抽取2人,求至少有1人是等的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com