(本小题14分)
设函数y=f(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1=f(1)+1,
(1)求数列{an}的通项公式,并求Sn关于n的表达式;
(2)设函数g(x)对任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:,Tn为数列{bn}的前n项和,试比较4Sn与Tn的大小。
科目:高中数学 来源:2012-2013学年福建省福州外国语学校高三上学期期中考试文科数学试卷(解析版) 题型:解答题
(本小题14分)设函数
.![]()
(Ⅰ)讨论
的单调性;
(Ⅱ)已知
,若函数
的图象总在直线
的下方,求
的取值范围;
(Ⅲ)记
为函数
的导函数.若
,试问:在区间
上是否存在
(![]()
)个正数
…
,使得
成立?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源:2015届福建省高一上学期第一次月考数学试卷(解析版) 题型:解答题
20、 (本小题14分)
已知函数y=x2-2ax+1(a为常数)在
上的最小值为
,
试将
用a表示出来,并求出
的最大值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河南省高三12月月考理科数学卷 题型:解答题
(本小题12分)设函数y=x
+ax
+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4,
![]()
(1)求a、b、c的值;
(2)求函数的递减区间。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com