精英家教网 > 高中数学 > 题目详情

(本小题14分)

设函数yf(x)的定义域为(0,+∞),且在(0,+∞)上单调递增,若对任意xy∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,数列{an}满足:a1f(1)+1,

(1)求数列{an}的通项公式,并求Sn关于n的表达式;

(2)设函数g(x)对任意xy都有:g(xy)=g(x)+g(y)+2xy,若g(1)=1,正项数列{bn}满足:Tn为数列{bn}的前n项和,试比较4SnTn的大小。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题14分)

设函数,其中

(I)当时,判断函数在定义域上的单调性;

(II)求函数的极值点;

(III)证明对任意的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州外国语学校高三上学期期中考试文科数学试卷(解析版) 题型:解答题

(本小题14分)设函数.

(Ⅰ)讨论的单调性;

(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;

(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一上学期第一次月考数学试卷(解析版) 题型:解答题

20、 (本小题14分)

已知函数y=x2-2ax+1(a为常数)在上的最小值为

试将用a表示出来,并求出的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三12月月考理科数学卷 题型:解答题

(本小题12分)设函数y=x+ax+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4,

(1)求a、b、c的值;       

(2)求函数的递减区间。

 

查看答案和解析>>

同步练习册答案