精英家教网 > 高中数学 > 题目详情
已知四棱锥S-ABCD的底面为平行四边形,E、F分别是SA、BD上的点,且SE:EA=BF:FD,直线AF交棱BC于点Q,求证:EF∥SQ.
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:由已知得BF:FD=QF:FA,从而QF:FA=SE:EA,由此能证明EF∥SQ.
解答: 证明:∵因为底面ABCD的为平行四边形,
AQ与DB相交于点F,
所以BF:FD=QF:FA,
又知SE:EA=BF:FD,
所以在平面SAQ中,QF:FA=SE:EA,
所以EF∥SQ.
点评:本题考查两直线平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

写出命题:“若x>2,则x>1”的否命题:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两个定点A、B间距离为6,动点P到A、B距离平方差为常数λ,动点Q到A、B两点距离平方和为26,且Q轨迹上恰有三个点到P的轨迹的距离为1,则λ值可为(  )
A、12B、24C、4D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|-x2+2x>0},N={x|
x
x-1
<1},则M∩N等于(  )
A、(0,2)
B、(0,1)
C、(1,2)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c?β,a∥b.
(1)判断c与β的位置关系,并说明理由.
(2)判断c与a的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2,6,-3),则与
a
平行的单位向量的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
9
-y2
=1有动点P,F1,F2是曲线的两个焦点,则△PF1F2的重心M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
3
x
+x22n的展开式的二项式系数和比(3x-1)n的展开式的二项式系数和大992.求(2x-
1
x
10的展开式中,
(1)二项式系数最大的项;
(2)系数的绝对值最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn=2n+1-n-2,则an=
 

查看答案和解析>>

同步练习册答案