精英家教网 > 高中数学 > 题目详情
12.学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分,规定满意度不低于98分,则评价该教师为“优秀”,现从某班学生中随机抽取10名,如图茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶);
(1)指出这组数据的众数和中位数;
(2)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记ξ表示抽到评价该教师为“优秀”的人数,求ξ的分布列及数学期望.

分析 (1)直接利用茎叶图,写出这组数据的众数和中位数;
(2)设A1表示所取3人中有i个人评价该教师为“优秀”,至多有1人评价该教师为“优秀”记为事件A,然后求概率;
(3)ξ的可能取值为0,1,2,3,求出概率,写出分布列,然后求解期望即可.

解答 解:(1)众数:87;   中位数:88.5
(2)设A1表示所取3人中有i个人评价该教师为“优秀”,至多有1人评价该教师为“优秀”记为事件A,则$P(A)=P({A_0})+P({A_1})=\frac{C_7^3}{{C_{10}^3}}+\frac{C_3^1C_7^2}{{C_{10}^3}}=\frac{98}{120}=\frac{49}{60}$;
(3)ξ的可能取值为0,1,2,3,$P(ξ=0)={(\frac{7}{10})^3}=\frac{343}{1000}$;$P(ξ=1)=C_3^1\frac{3}{10}{(\frac{7}{10})^2}=\frac{441}{1000}$;$P(ξ=2)=C_3^2{(\frac{3}{10})^2}\frac{7}{10}=\frac{189}{1000}$;$P(ξ=3)={(\frac{3}{10})^3}=\frac{27}{1000}$;
分布列为

ξ0123
P$\frac{343}{1000}$$\frac{441}{1000}$$\frac{189}{1000}$$\frac{27}{1000}$
$Eξ=0×\frac{343}{1000}+1×\frac{441}{1000}+2×\frac{189}{1000}+3×\frac{27}{1000}=0.9$.
注:用二项分布直接求解也可以.

点评 本题考查离散型随机变量的分布列以及期望的求法,茎叶图的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.根据下列条件,求直线方程(结果写成一般式)
(1)直线l过点(-1,2),且在x,y轴上的截距相等;
(2)直线m过点(2,1),并且到A(1,1)、B(3,5)两点的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合.曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),直线l的极坐标方程是ρ(cosθ+2sinθ)=15.若点P、Q分别是曲线C和直线l上的动点,则P、Q两点之间距离的最小值是(  )
A.$\sqrt{10}$B.2$\sqrt{3}$C.2$\sqrt{5}$D.$\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图是一个面积为1的三角形,现进行如下操作.第一次操作:分别连结这个三角形三边的中点,构成4个三角形,挖去中间一个三角形(如图①中阴影部分所示),并在挖去的三角形上贴上数字标签“1”;第二次操作:连结剩余的三个三角形三边的中点,再挖去各自中间的三角形(如图②中阴影部分所示),同时在挖去的3个三角形上都贴上数字标签“2”;第三次操作:连结剩余的各三角形三边的中点,再挖去各自中间的三角形,同时在挖去的三角形上都贴上数字标签“3”;…,如此下去.记第n次操作中挖去的三角形个数为an.如a1=1,a2=3.

(1)求an
(2)求第n次操作后,挖去的所有三角形面积之和Pn
(3)求第n次操作后,挖去的所有三角形上所贴标签上的数字和Qn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)-ex]=e+1(e是自然对数的底数),则方程f(x)-x-2=0的解的个数为(  )个.
A.1B.0C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知M={x|y=$\sqrt{1-lo{g}_{2}x}$},N={x|x2-2x-3<0},则M∩N=(  )
A.(0,2)B.(-1,2]C.(0,2]D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{9}^{x}-a}{{3}^{x}}$的图象关于原点对称,则a=(  )
A.1B.-1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把函数g(x)=sin(x-$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$个单位可以得到函数f(x)的图象,则f($\frac{π}{6}$)=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=f(x)的定义域为[-1,1],且f(-x)=-f(x),f(0)=1,当a,b∈[-1,1]且a+b≠0,时$\frac{f(a)+f(b)}{a+b}$>0恒成立.
(1)判断f(x)在[-1,1]上的单调性并证明结论;
(2)解不等式f(x+$\frac{1}{2}$)<f($\frac{1}{x-1}$)

查看答案和解析>>

同步练习册答案