| A. | $[{-1,\sqrt{3}}]$ | B. | $[{-2,\sqrt{3}}]$ | C. | $[{-\sqrt{3},2}]$ | D. | $[{1,\sqrt{3}}]$ |
分析 利用正弦函数的图象和性质求得f(x)的解析式,可得h(x)的解析式,再利用余弦函数的定义域和值域求得函数h(x)在区间$[{0,\frac{π}{2}}]$上的值域.
解答 解:∵函数$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$ 满足f(x+π)=-f(x),∴f(x+2π)=f(x),故f(x)的最小正周期为$\frac{2π}{ω}$=2π,
∴ω=1,f(x)=sin(x+φ).
∵$f(0)=\frac{1}{2}$=sinφ,即sinφ=$\frac{1}{2}$,∴φ=$\frac{π}{6}$,f(x)=sin(x+$\frac{π}{6}$).
则函数h(x)=2cos(ωx+φ)=2cos(x+$\frac{π}{6}$),在区间$[{0,\frac{π}{2}}]$上,x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],∴cos(x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$],
∴h(x)=2cos(x+$\frac{π}{6}$)∈[-1,$\sqrt{3}$],
故选:A.
点评 本题主要考查正弦函数的图象和性质,余弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $0<{x_0}<\frac{1}{2}$ | B. | $\frac{1}{2}<{x_0}<1$ | C. | $\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$ | D. | $\sqrt{2}<{x_0}<\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{9}$ | B. | $\frac{3}{4}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com