精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$,若f(x)满足f(x+π)=-f(x),且$f(0)=\frac{1}{2}$,则函数h(x)=2cos(ωx+φ)在区间$[{0,\frac{π}{2}}]$上的值域为(  )
A.$[{-1,\sqrt{3}}]$B.$[{-2,\sqrt{3}}]$C.$[{-\sqrt{3},2}]$D.$[{1,\sqrt{3}}]$

分析 利用正弦函数的图象和性质求得f(x)的解析式,可得h(x)的解析式,再利用余弦函数的定义域和值域求得函数h(x)在区间$[{0,\frac{π}{2}}]$上的值域.

解答 解:∵函数$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$ 满足f(x+π)=-f(x),∴f(x+2π)=f(x),故f(x)的最小正周期为$\frac{2π}{ω}$=2π,
∴ω=1,f(x)=sin(x+φ).
∵$f(0)=\frac{1}{2}$=sinφ,即sinφ=$\frac{1}{2}$,∴φ=$\frac{π}{6}$,f(x)=sin(x+$\frac{π}{6}$).
则函数h(x)=2cos(ωx+φ)=2cos(x+$\frac{π}{6}$),在区间$[{0,\frac{π}{2}}]$上,x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],∴cos(x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$],
∴h(x)=2cos(x+$\frac{π}{6}$)∈[-1,$\sqrt{3}$],
故选:A.

点评 本题主要考查正弦函数的图象和性质,余弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数y=x2的图象在点$({{x_0},{x_0}^2})$处的切线为m,若m也与函数y=lnx,x∈(0,1]的图象相切,则x0必满足(  )
A.$0<{x_0}<\frac{1}{2}$B.$\frac{1}{2}<{x_0}<1$C.$\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$D.$\sqrt{2}<{x_0}<\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知三角形ABC中,角A,B,C的对边分别为a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A为锐角.
(1)求三角形内角A的大小;
(2)若a=5,b=8,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a+i=(b+i)(2-i)(其中a,b是实数,i为虚数单位),则复数a+bi在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,已知前10项的和等于前5项的和,若a2+ak=0,则k的值等于(  )
A.14B.12C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={0,1},集合N满足M∪N={0,1},则集合N共有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4,甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),则甲获胜的概率为(  )
A.$\frac{4}{9}$B.$\frac{3}{4}$C.$\frac{5}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy 中,F,A,B 分别为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的右焦点、右顶点和上顶点,若$OF=FA,{S_{△FAB}}=\frac{{\sqrt{3}}}{2}$
(1)求a的值;
(2)过点P(0,2)作直线l 交椭圆于M,N 两点,过M 作平行于x 轴的直线交椭圆于另外一点Q,连接NQ
,求证:直线NQ 经过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合$A=\left\{{-1\;,0\;,\frac{1}{2}\;,3}\right\}$,B={x|x≥1},则A∩B={3}.

查看答案和解析>>

同步练习册答案