精英家教网 > 高中数学 > 题目详情
12.设集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},若A∩B?∅,A∩C=∅,求a的值.

分析 求出集合A,B,C,根据条件A∩B?∅,A∩C=∅,进行求解即可.

解答 解:集合B={x|x2-5x+6=0}={2,3},
C={x|x2+2x-8=0}={2,-4},
∵A∩C≠∅,
则2∉A,
∵A∩B?∅,
∴3∈A,
∴32-3a+a2-19=0,
即a2-3a-10=0,解得a=5或-2,
若a=5,则A={x|x2-5x+6=0}={2,3},不满足条件,
若a=-2,则A={x|x2+2x-15=0}={3,-5},则A∩C=∅,满足条件,
故a=-2.

点评 本题主要考查集合的基本运算,根据条件求出a的取值,注意对a进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若奇函数f(x)在(0,+∞)上是增函数,且f(-1)=0,则不等式xf(x)>0的解集是{x|0<x<1或-1<x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.△ABC中,内角A、B、C对应的边为a、b、c,且满足a•sinA+c•sinC-$\sqrt{2}$a•sinC=b•sinB
(1)求B;
(2)若A=75°,b=2,求a、c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)=(k+2)ax+2-b(a>0,且a≠1)是指数函数
(1)求k,b的值;
(2)求解不等式f(2x-7)>f(4x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的定义域
(1)f(x)=$\sqrt{2x+1}$+$\sqrt{3-4x}$;
(2)y=$\frac{\sqrt{1-x}}{{x}^{2}-2x-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x.
(1)求函数f(x)在R上的解析式;
(2)画出函数f(x)的图象;
(3)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f($\frac{x-1}{x+1}$)=-x-1.
(1)求f(x);
(2)求f(x)在区间[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\frac{b}{|x|+a}(a<0,b>0)$的图象形如汉字“囧”,故称其为“囧函数”.
下列命题正确的是③⑤.
①“囧函数”的值域为R;             
②“囧函数”在(0,+∞)上单调递增;
③“囧函数”的图象关于y轴对称;      
④“囧函数”有两个零点;
⑤“囧函数”的图象与直线y=kx+m(k≠0)至少有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的单调递增区间是(  )
A.(-∞,-3)B.(-∞,-1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案