| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{36}-\frac{y^2}{16}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{16}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{36}=1$ |
分析 设A(m,n),(m<0,n>0),双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),运用双曲线的a,b,c的关系和等腰三角形的面积公式,由等积法可得m,n,代入双曲线的方程,解方程可得a,b,进而得到所求双曲线的方程.
解答 解:设A(m,n),(m<0,n>0),
双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
由题意可得c=2$\sqrt{5}$,a2+b2=20,①
在等腰三角形OAF中,
S△OAF=$\frac{1}{2}$|OF|•n=$\sqrt{5}$n,
又AF边上的高为h=$\sqrt{(2\sqrt{5})^{2}-{2}^{2}}$=4,
可得S△OAF=$\frac{1}{2}$h•|AF|=2h=8,
解得n=$\frac{8}{\sqrt{5}}$,
由勾股定理可得m2+n2=20,
解得m=-$\frac{6}{\sqrt{5}}$,
即P(-$\frac{6}{\sqrt{5}}$,$\frac{8}{\sqrt{5}}$),
代入双曲线的方程可得$\frac{36}{5{a}^{2}}$-$\frac{64}{5{b}^{2}}$=1②
由①②解得a=2,b=4,
则双曲线的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1.
故选:C.
点评 本题考查双曲线的方程的求法,注意运用待定系数法,以及平面几何中三角形的面积公式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AB}+\overrightarrow{PA}+\overrightarrow{BQ}$ | B. | $\overrightarrow{AB}+\overrightarrow{PC}+\overrightarrow{BA}-\overrightarrow{QC}$ | C. | $\overrightarrow{PA}+\overrightarrow{AB}-\overrightarrow{BQ}$ | D. | $\overrightarrow{QC}+\overrightarrow{CQ}-\overrightarrow{QP}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $2+\sqrt{2}$ | C. | 4 | D. | $2+2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $28+4\sqrt{3}+12\sqrt{2}$ | B. | $36+4\sqrt{3}+12\sqrt{2}$ | C. | $36+4\sqrt{2}+12\sqrt{3}$ | D. | $44+12\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届宁夏高三上月考一数学(理)试卷(解析版) 题型:填空题
定义在
上的函数
对任意两个不等的实数
都
,则称函数
为“
函数”,以下函数中为“
函数”的序号为_________.
(1)
;
(2)
;
(3)
;
(4)![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com