分析 由题意知从A到B的最短路线,均需走8步,包括横向的5步和纵向的3步,只要确定第几步是横向的,第几步是纵向的就可以,再进一步只要确定哪几步是横向走,问题转化为数学问题,是一个从八个元素中选三个的一个组合.
解答 解:∵从A到B的最短路线,均需走7步,包括横向的5步和纵向的3步,
只要确定第1,2…8步哪些是横向的,哪些是纵向的就可以,
实际只要确定哪几步是横向走.
∴每一条从A到B的最短路线对应着从第1,2…8步取出5步(横向走)的一个组合,
∴从A到B的最短路线共有C85=56条.
故答案为:56.
点评 本题是一个排列组合应用题,这个内容在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b>a>d>c | B. | a>b>c>d | C. | c>d>b>a | D. | d>c>a>d |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{36}-\frac{y^2}{16}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{16}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{36}=1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com