分析 (I)根据周期公式计算ω,根据f($\frac{5π}{12}$)=1计算φ,从而得出f(x)的解析式;
(II)利用函数图象变换得出g(x)解析式,求出g(x)的最小值即可得出m的范围.
解答 解:( I)由已知得,$\frac{T}{2}$=$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{π}{2}$,即T=π,∴$\frac{2π}{ω}$=π,∴ω=2,
又f($\frac{5π}{12}$)=sin($\frac{5π}{6}$+φ)=1,
∴$\frac{5π}{6}$+φ=$\frac{π}{2}$+2kπ,解得φ=-$\frac{π}{3}$+2kπ,k∈Z.
又∵|φ|<$\frac{π}{2}$,∴φ=-$\frac{π}{3}$,
∴f(x)的解析式为f(x)=sin(2x-$\frac{π}{3}$).
( II)将y=f(x)图象向右平移$\frac{π}{6}$个单位,得y=sin(2x-$\frac{2π}{3}$)的图象,
∴g(x)=sin(4x-$\frac{2π}{3}$),
∵x∈[$\frac{π}{8}$,$\frac{π}{3}$],∴4x-$\frac{2π}{3}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴当4x-$\frac{2π}{3}$=-$\frac{π}{6}$时,函数g(x)在[$\frac{π}{8}$,$\frac{π}{3}$]上的最小值为-$\frac{1}{2}$.
∴m$<-\frac{1}{2}$.
点评 本题考查了正弦函数的性质,函数图象的变换,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | ($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | ($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a}{d}$>$\frac{b}{c}$ | B. | $\frac{a}{c}$<$\frac{b}{c}$ | C. | $\frac{a}{c}$>$\frac{b}{d}$ | D. | $\frac{a}{c}$<$\frac{b}{d}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com