精英家教网 > 高中数学 > 题目详情
3.下列四个命题:
①“等边三角形的三个内角均为60°”的逆命题
②“全等三角形的面积相等”的否命题
③“若k>0,则方程x2+2x-k=0有实根”的逆否命题
④“若ab≠0,则a≠0”的否命题
其中真命题的个数是(  )
A.0个B.1个C.2个D.3个

分析 ①,“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形是等边三角形”;
②,“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等“;
③,“若k>0,则方程x2+2x-k=0有实根”是真命题,其逆否命题一定是真命题;
④,“若ab≠0,则a≠0”的否命题为:“若ab=0,则a=0”.

解答 解:对于①,“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形是等边三角形”,故①正确;
对于②,“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等”,故②错;
对于③,“若k>0,则方程x2+2x-k=0有实根”是真命题,其逆否命题一定是真命题,故③正确;
对于④,“若ab≠0,则a≠0”的否命题为:“若ab=0,则a=0”,故④错;
故选:C

点评 本题考查了命题真假的判定,涉及到了三角函数的基础知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若直线mx+2ny-4=0(m、n∈R,m≠n)始终平分圆x2+y2-4x-2y-4=0的周长,则mn的取值范围是(  )
A.(0,1)B.(-1,0)C.(-∞,1)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.记等差数列{an}的前n项和为Sn,利用倒序求和的方法,可将Sn表示成首项a1、末项an与项数n的一个关系式,即公式Sn=$\frac{n({a}_{1}+{a}_{2})}{2}$;类似地,记等比数列{bn}的前n项积为Tn,且bn>0(n∈N*),试类比等差数列求和的方法,可将Tn表示成首项b1、末项bn与项数n的一个关系式,即公式Tn=(  )
A.$\frac{n({b}_{1}+{b}_{n})}{2}$B.$\frac{({b}_{1}+{b}_{n})^{n}}{2}$C.$\root{n}{{b}_{1}{b}_{2}}$D.(b1bn)${\;}^{\frac{n}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市5年中的煤气消耗量与使用煤气户数的历史资料如下:
年份20062007200820092010
x用户(万户)11.11.51.61.8
y(万立方米)6791112
(1)检验是否线性相关;
(2)求回归方程;
(3)若市政府下一步再扩大两千煤气用户,试预测该市煤气消耗量将达到多少?
附:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.通过随机询问某书店110名读者对莫言的作品是否满意,得到如下的列联表:
总计
满意503080
不满意102030
 总计6050110
(1)从这50名女读者中按对莫言的作品是否满意采取分层抽样,抽取一个容量为5的样本,则样本中满意与不满意的女读者各有多少名?
P(K2≥k00.050.0250.01
k03.8415.0246.635
(2)由以上列联表,问有多大把握认为“读者性别与对莫言作品的满意度”有关?${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据下列条件,求双曲线的标准方程.
(1)经过两点$P({-3,2\sqrt{7}})$和$Q({-6\sqrt{2},-7})$;
(2)与双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$有共同的渐近线,且过点$({2,2\sqrt{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知经过A(5,-3)且倾斜角的余弦值是-$\frac{3}{5}$的直线,直线与圆x2+y2=25交于B、C两点.
(1)请写出该直线的参数方程以及BC中点坐标;
(2)求过点A与圆相切的切线方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在它的某一个周期内的单调减区间是[$\frac{5π}{12}$,$\frac{11π}{12}$].
(Ⅰ)求f(x)的解析式;
(Ⅱ)将y=f(x)的图象先向右平移$\frac{π}{6}$个单位,再将图象上所有点的横坐标变为原来的$\frac{1}{2}$(纵坐标不变),所得到的图象对应的函数记为g(x),若对于任意的x∈[$\frac{π}{8}$,$\frac{π}{3}$],不等式m<g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求Sn
(2)令${b_n}=\frac{1}{S_n}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案