4£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬Ö±Ïßl£ºx=my-cÓëÍÖÔ²C½»ÓÚµãM£¬NÁ½µã£¬µ±m=-$\frac{{\sqrt{3}}}{3}$£¬MÊÇÍÖÔ²CµÄ¶¥µã£¬ÇÒ¡÷MF1F2µÄÖܳ¤Îª6£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôM£¬F2£¬NÔÚÖ±Ïßx=4ÉϵÄÉäÓ°·Ö±ðΪE£¬K£¬D£¬Á¬½ÓMD£¬µ±m±ä»¯Ê±£¬Ö¤Ã÷Ö±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬²¢Çó³ö¸Ã¶¨µãµÄ×ø±ê£»
£¨3£©ÉèÍÖÔ²CµÄ×ó¶¥µãΪA£¬Ö±ÏßAM£¬ANÓëÖ±Ïßx=4·Ö±ðÏཻÓÚµãP£¬Q£¬ÊÔÎÊ£ºµ±m±ä»¯Ê±£¬ÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³öÕâ¸ö¶¨Öµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±m=-$\frac{{\sqrt{3}}}{3}$ʱ£¬¿ÉµÃÖ±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$£¬ÓÉÌâÒâÁйØÓÚa£¬cµÄ·½³Ì×飬½âµÃa¡¢cµÄÖµ£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²CµÄ·½³Ì¿ÉÇó£»
£¨2£©ÓÉ£¨1£©ÇóµÃc=1£¬ÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃµ½M¡¢NµÄ×Ý×ø±êµÄºÍÓë»ý£¬
È»ºóÏÈÇóÖ±ÏßlÓëxÖᴹֱʱ£¬MDÓëNEµÄ½»µãΪG£¨$\frac{5}{2}£¬0$£©£¬ÔÙÀûÓÃбÂÊÏàµÈÖ¤µÃMG¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬NEÒ²¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬¼´¿É˵Ã÷Ö±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬¸Ã¶¨µãµÄ×ø±êΪG£¨$\frac{5}{2}£¬0$£©£»
£¨3£©Çó³öÖ±ÏßAMµÄ·½³Ì£¬µÃµ½PµÄ×ø±ê£¬Í¬Àí¿ÉµÃQ×ø±ê£¬ÉèH£¨x£¬y£©ÎªÒÔPQΪֱ¾¶µÄÔ²ÉÏÈÎÒâÒ»µã£¬¿ÉµÃ$\overrightarrow{PH}•\overrightarrow{QH}=0$£¬µÃµ½ÒÔPQΪֱ¾¶µÄÔ²µÄ·½³ÌÈ¡y=0£¬ÇóµÃx=1»òx=7£®ËµÃ÷ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý£¨1£¬0£©Ó루7£¬0£©£¬¼´µ±m±ä»¯Ê±£¬ÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊǶ¨Öµ6£®

½â´ð £¨1£©½â£ºµ±m=-$\frac{{\sqrt{3}}}{3}$ʱ£¬Ö±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{2a+2c=6}\\{\frac{c}{a}=cos\frac{¦Ð}{3}}\end{array}\right.$£¬½âµÃa=2£¬c=1£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ£¨1£©Öª£¬c=1£¬¡àÖ±ÏßlµÄ·½³ÌΪx=my+1£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{x=my-1}\end{array}\right.$£¬¿ÉµÃ£¨3m2+4£©y2+6my-9=0£®
¡à${y}_{1}+{y}_{2}=\frac{-6m}{3{m}^{2}+4}£¬{y}_{1}{y}_{2}=\frac{-9}{3{m}^{2}+4}$£®
µ±Ö±ÏßlÓëxÖᴹֱʱ£¬¿ÉµÃMDÓëNEµÄ½»µãΪF2KµÄÖеãG£¨$\frac{5}{2}£¬0$£©£¬
µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÏÂÃæÖ¤Ã÷MD¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
ÓÉÌâÒâ¿ÉÖªD£¨4£¬y2£©£¬
${k}_{GD}=\frac{{y}_{2}}{4-\frac{5}{2}}=\frac{2{y}_{2}}{3}$£¬${k}_{AG}=\frac{{y}_{1}}{{x}_{1}-\frac{5}{2}}=\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}$£¬
¡ß${k}_{AG}-{k}_{GD}=\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}-\frac{2{y}_{2}}{3}$=$\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}-\frac{2}{3}•\frac{-9}{£¨3{m}^{2}+4£©{y}_{1}}$
=$\frac{£¨3{m}^{2}+4£©{{y}_{1}}^{2}+6£¨m{y}_{1}-\frac{3}{2}£©}{£¨m{y}_{1}-\frac{3}{2}£©£¨3{m}^{2}+4£©{y}_{1}}$=$\frac{£¨3{m}^{2}+4£©{{y}_{1}}^{2}+6m{y}_{1}-9}{£¨m{y}_{1}-\frac{3}{2}£©£¨3{m}^{2}+4£©{y}_{1}}=0$£®
¡àkAG=kGD£¬¼´MG¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
ͬÀí¿ÉÖ¤NEÒ²¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
¡àÖ±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬¸Ã¶¨µãµÄ×ø±êΪG£¨$\frac{5}{2}£¬0$£©£»
£¨3£©ÓÉÌâÒâ¿ÉµÃÖ±ÏßAMµÄ·½³ÌΪ$y=\frac{{y}_{1}}{{x}_{1}+2}£¨x+2£©$£¬
Áîx=4£¬µÃPµã×ø±êΪ£¨$4£¬\frac{6{y}_{1}}{{x}_{1}+2}$£©£¬
ͬÀí¿ÉµÃQ£¨$4£¬\frac{6{y}_{2}}{{x}_{2}+2}$£©£¬
ÉèH£¨x£¬y£©ÎªÒÔPQΪֱ¾¶µÄÔ²ÉÏÈÎÒâÒ»µã£¬Ôò$\overrightarrow{PH}•\overrightarrow{QH}=0$£¬
¡àÒÔPQΪֱ¾¶µÄÔ²µÄ·½³ÌΪ$£¨x-4£©^{2}+£¨y-\frac{6{y}_{1}}{{x}_{1}+2}£©£¨y-\frac{6{y}_{2}}{{x}_{2}+2}£©=0$£®
Áîy=0£¬Ôò$£¨x-4£©^{2}+\frac{36{y}_{1}{y}_{2}}{£¨m{y}_{1}+3£©£¨m{y}_{2}+3£©}=0$£®
¼´$£¨x-4£©^{2}+\frac{36{y}_{1}{y}_{2}}{{m}^{2}{y}_{1}{y}_{2}+3m£¨{y}_{1}+{y}_{2}£©+9}=0$£¬
¼´$£¨x-4£©^{2}+\frac{36¡Á\frac{-9}{3{m}^{2}+4}}{{m}^{2}¡Á\frac{-9}{3{m}^{2}+4}+3m¡Á\frac{-6m}{3{m}^{2}+4}+9}=0$£¬
¼´$£¨x-4£©^{2}+\frac{-9¡Á36}{-9{m}^{2}-18{m}^{2}+27{m}^{2}+36}=0$£®
¼´£¨x-4£©2=9£¬½âµÃx=1»òx=7£®
¼´ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý£¨1£¬0£©Ó루7£¬0£©£¬
¡àµ±m±ä»¯Ê±£¬ÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊǶ¨Öµ6£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÀûÓÃбÂÊÖ¤Ã÷Èýµã¹²ÏßÎÊÌ⣬¿¼²éÁËÔ²µÄ·½³ÌµÄÓ¦Óã¬Ö±ÏßÓëÇúÏßÁªÁ¢£¬ÀûÓ÷½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµÇó½â£¬ÊÇ´¦ÀíÕâÀàÎÊÌâµÄ×îΪ³£Óõķ½·¨£¬µ«Ô²×¶ÇúÏßµÄÌØµãÊǼÆËãÁ¿±È½Ï´ó£¬ÒªÇó¿¼Éú¾ß±¸½ÏÇ¿µÄÔËËãÍÆÀíµÄÄÜÁ¦£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ö±Ïßy=k£¨x-1£©½»Å×ÎïÏßy2=8xÓÚA¡¢BÁ½µã£¬ÈôABÖеãµÄºá×ø±êΪ3£¬ÔòÏÒABµÄ³¤Îª$2\sqrt{15}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªf£¨x£©=lnx+£¨x-a£©2
£¨1£©Èôa£¾0£¬ÇÒf£¨x£©´æÔÚ¼«Öµ£¬ÇóʵÊýaµÄȡֵ·¶Î§
£¨2£©ÔÚ£¨1£©Ìõ¼þÏ£¬ÇóÖ¤£ºf£¨x£©µÄËùÓм«ÖµÒ»ºÍ´óÓÚln$\frac{e}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏóÈçͼËùʾ£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬f£¨A-$\frac{¦Ð}{3}$£©=$\sqrt{3}$£¬ÇÒ½ÇAΪÈñ½Ç£¬b+c=2a=2$\sqrt{3}$£¬Çó¡÷ABCµÄÃæ»ý²¢Åжϡ÷ABCµÄÐÎ×´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an=logn£¨n+1£©£¨n¡Ý2£¬n¡ÊN*£©£®¶¨Ò壺ʹ³Ë»ýa1•a2•a3¡­anΪÕýÕûÊýµÄk£¨k¡ÊN+£©½Ð×ö¡°ÐÒÔËÊý¡±£¬ÔòÔÚ[1£¬2015]ÄÚËùÓС°ÐÒÔËÊý¡±µÄºÍΪ£¨¡¡¡¡£©
A£®2035B£®2036C£®4084D£®4085

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªµãÁÐT£ºP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬¡­Pk£¨xk£¬yk£© £¨k¡ÊN*£¬k¡Ý2£©Âú×ãP1£¨1£¬1£©£¬$\left\{\begin{array}{l}{{x}_{i}={x}_{i-1}+1}\\{{y}_{i}={y}_{i-1}}\end{array}\right.$Óë$\left\{\begin{array}{l}{{x}_{i}={x}_{i-1}}\\{{y}_{i}={y}_{i-1}+1}\end{array}\right.$£¨i=2£¬3£¬4¡­k£©ÖÐÓÐÇÒÖ»ÓÐÒ»¸ö³ÉÁ¢£®
£¨1£©Ð´³öÂú×ãk=4µÄËùÓеãÁУ»
£¨2£©Ö¤Ã÷£º¶ÔÓÚÈÎÒâ¸ø¶¨µÄk£¨k¡ÊN*£¬k¡Ý2£©£¬²»´æÔÚµãÁÐT£¬Ê¹µÃ$\sum_{i=1}^{k}{x}_{i}$+$\sum_{i=1}^{k}{y}_{i}$=2k£»
£¨3£©µ±k=2n-1ÇÒP2n-1£¨n£¬n£©£¨n¡ÊN*£¬n¡Ý2£©Ê±£¬Çó$\sum_{i=1}^{k}{x}_{i}¡Á\sum_{i=1}^{k}{y}_{i}$ µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£¬|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$£¬|$\overrightarrow{a}$-$\overrightarrow{b}$|=1£¬Ôò¦ÈµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}¡Ü¦È¡Ü\frac{¦Ð}{2}$B£®$\frac{¦Ð}{3}¡Ü¦È¡Ü\frac{¦Ð}{2}$C£®$0¡Ü¦È¡Ü\frac{¦Ð}{3}$D£®$0£¼¦È£¼\frac{2¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÌÝÐÎABCD£¬ÈçͼËùʾ£¬ÆäÖÐAB¡ÎCD£¬ÇÒDC=2AB£¬Èý¸ö¶¥µãµÄ×ø±ê·Ö±ðΪA£¨1£¬2£©¡¢B£¨2£¬1£©¡¢C£¨4£¬2£©£¬ÇóµãDµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©Èôa£¼$\frac{sinx}{x}$£¼b¶Ôx¡Ê£¨0£¬$\frac{¦Ð}{2}$£©ºã³ÉÁ¢£¬ÇóaµÄ×î´óÖµÓëbµÄ×îСֵ£®
£¨2£©Ö¤Ã÷£ºsin$\frac{¦Ð}{{2}^{2}}$+sin$\frac{¦Ð}{{3}^{2}}$+¡­+sin$\frac{¦Ð}{{n}^{2}}$£¾$\frac{n-1}{n+1}$£¬n¡Ý2£¬n¡ÊN*£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸