·ÖÎö £¨1£©µ±m=-$\frac{{\sqrt{3}}}{3}$ʱ£¬¿ÉµÃÖ±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$£¬ÓÉÌâÒâÁйØÓÚa£¬cµÄ·½³Ì×飬½âµÃa¡¢cµÄÖµ£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²CµÄ·½³Ì¿ÉÇó£»
£¨2£©ÓÉ£¨1£©ÇóµÃc=1£¬ÉèÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃµ½M¡¢NµÄ×Ý×ø±êµÄºÍÓë»ý£¬
È»ºóÏÈÇóÖ±ÏßlÓëxÖᴹֱʱ£¬MDÓëNEµÄ½»µãΪG£¨$\frac{5}{2}£¬0$£©£¬ÔÙÀûÓÃбÂÊÏàµÈÖ¤µÃMG¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬NEÒ²¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬¼´¿É˵Ã÷Ö±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬¸Ã¶¨µãµÄ×ø±êΪG£¨$\frac{5}{2}£¬0$£©£»
£¨3£©Çó³öÖ±ÏßAMµÄ·½³Ì£¬µÃµ½PµÄ×ø±ê£¬Í¬Àí¿ÉµÃQ×ø±ê£¬ÉèH£¨x£¬y£©ÎªÒÔPQΪֱ¾¶µÄÔ²ÉÏÈÎÒâÒ»µã£¬¿ÉµÃ$\overrightarrow{PH}•\overrightarrow{QH}=0$£¬µÃµ½ÒÔPQΪֱ¾¶µÄÔ²µÄ·½³ÌÈ¡y=0£¬ÇóµÃx=1»òx=7£®ËµÃ÷ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý£¨1£¬0£©Ó루7£¬0£©£¬¼´µ±m±ä»¯Ê±£¬ÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊǶ¨Öµ6£®
½â´ð £¨1£©½â£ºµ±m=-$\frac{{\sqrt{3}}}{3}$ʱ£¬Ö±ÏßlµÄÇãб½ÇΪ$\frac{2¦Ð}{3}$£¬
ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{2a+2c=6}\\{\frac{c}{a}=cos\frac{¦Ð}{3}}\end{array}\right.$£¬½âµÃa=2£¬c=1£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©ÓÉ£¨1£©Öª£¬c=1£¬¡àÖ±ÏßlµÄ·½³ÌΪx=my+1£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{x=my-1}\end{array}\right.$£¬¿ÉµÃ£¨3m2+4£©y2+6my-9=0£®
¡à${y}_{1}+{y}_{2}=\frac{-6m}{3{m}^{2}+4}£¬{y}_{1}{y}_{2}=\frac{-9}{3{m}^{2}+4}$£®
µ±Ö±ÏßlÓëxÖᴹֱʱ£¬¿ÉµÃMDÓëNEµÄ½»µãΪF2KµÄÖеãG£¨$\frac{5}{2}£¬0$£©£¬
µ±Ö±ÏßlÓëxÖá²»´¹Ö±Ê±£¬ÏÂÃæÖ¤Ã÷MD¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
ÓÉÌâÒâ¿ÉÖªD£¨4£¬y2£©£¬
${k}_{GD}=\frac{{y}_{2}}{4-\frac{5}{2}}=\frac{2{y}_{2}}{3}$£¬${k}_{AG}=\frac{{y}_{1}}{{x}_{1}-\frac{5}{2}}=\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}$£¬
¡ß${k}_{AG}-{k}_{GD}=\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}-\frac{2{y}_{2}}{3}$=$\frac{{y}_{1}}{m{y}_{1}-\frac{3}{2}}-\frac{2}{3}•\frac{-9}{£¨3{m}^{2}+4£©{y}_{1}}$
=$\frac{£¨3{m}^{2}+4£©{{y}_{1}}^{2}+6£¨m{y}_{1}-\frac{3}{2}£©}{£¨m{y}_{1}-\frac{3}{2}£©£¨3{m}^{2}+4£©{y}_{1}}$=$\frac{£¨3{m}^{2}+4£©{{y}_{1}}^{2}+6m{y}_{1}-9}{£¨m{y}_{1}-\frac{3}{2}£©£¨3{m}^{2}+4£©{y}_{1}}=0$£®
¡àkAG=kGD£¬¼´MG¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
ͬÀí¿ÉÖ¤NEÒ²¹ý¶¨µãG£¨$\frac{5}{2}£¬0$£©£¬
¡àÖ±ÏßMDÓëNEÏཻÓÚÒ»¶¨µã£¬¸Ã¶¨µãµÄ×ø±êΪG£¨$\frac{5}{2}£¬0$£©£»
£¨3£©ÓÉÌâÒâ¿ÉµÃÖ±ÏßAMµÄ·½³ÌΪ$y=\frac{{y}_{1}}{{x}_{1}+2}£¨x+2£©$£¬
Áîx=4£¬µÃPµã×ø±êΪ£¨$4£¬\frac{6{y}_{1}}{{x}_{1}+2}$£©£¬
ͬÀí¿ÉµÃQ£¨$4£¬\frac{6{y}_{2}}{{x}_{2}+2}$£©£¬
ÉèH£¨x£¬y£©ÎªÒÔPQΪֱ¾¶µÄÔ²ÉÏÈÎÒâÒ»µã£¬Ôò$\overrightarrow{PH}•\overrightarrow{QH}=0$£¬
¡àÒÔPQΪֱ¾¶µÄÔ²µÄ·½³ÌΪ$£¨x-4£©^{2}+£¨y-\frac{6{y}_{1}}{{x}_{1}+2}£©£¨y-\frac{6{y}_{2}}{{x}_{2}+2}£©=0$£®
Áîy=0£¬Ôò$£¨x-4£©^{2}+\frac{36{y}_{1}{y}_{2}}{£¨m{y}_{1}+3£©£¨m{y}_{2}+3£©}=0$£®
¼´$£¨x-4£©^{2}+\frac{36{y}_{1}{y}_{2}}{{m}^{2}{y}_{1}{y}_{2}+3m£¨{y}_{1}+{y}_{2}£©+9}=0$£¬
¼´$£¨x-4£©^{2}+\frac{36¡Á\frac{-9}{3{m}^{2}+4}}{{m}^{2}¡Á\frac{-9}{3{m}^{2}+4}+3m¡Á\frac{-6m}{3{m}^{2}+4}+9}=0$£¬
¼´$£¨x-4£©^{2}+\frac{-9¡Á36}{-9{m}^{2}-18{m}^{2}+27{m}^{2}+36}=0$£®
¼´£¨x-4£©2=9£¬½âµÃx=1»òx=7£®
¼´ÒÔPQΪֱ¾¶µÄÔ²ºã¹ý£¨1£¬0£©Ó루7£¬0£©£¬
¡àµ±m±ä»¯Ê±£¬ÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²±»xÖá½ØµÃµÄÏÒ³¤ÊǶ¨Öµ6£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁËÀûÓÃбÂÊÖ¤Ã÷Èýµã¹²ÏßÎÊÌ⣬¿¼²éÁËÔ²µÄ·½³ÌµÄÓ¦Óã¬Ö±ÏßÓëÇúÏßÁªÁ¢£¬ÀûÓ÷½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµÇó½â£¬ÊÇ´¦ÀíÕâÀàÎÊÌâµÄ×îΪ³£Óõķ½·¨£¬µ«Ô²×¶ÇúÏßµÄÌØµãÊǼÆËãÁ¿±È½Ï´ó£¬ÒªÇó¿¼Éú¾ß±¸½ÏÇ¿µÄÔËËãÍÆÀíµÄÄÜÁ¦£¬ÊÇѹÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2035 | B£® | 2036 | C£® | 4084 | D£® | 4085 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{6}¡Ü¦È¡Ü\frac{¦Ð}{2}$ | B£® | $\frac{¦Ð}{3}¡Ü¦È¡Ü\frac{¦Ð}{2}$ | C£® | $0¡Ü¦È¡Ü\frac{¦Ð}{3}$ | D£® | $0£¼¦È£¼\frac{2¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com