精英家教网 > 高中数学 > 题目详情
9.函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是幂函数,且在x∈(0,+∞)上是减函数,则实数m=(  )
A.2B.-1C.3D.2或-1

分析 根据幂函数的定义,令m2-m-1=1,求出m的值,再判断m是否满足幂函数为减函数即可.

解答 解:∵幂函数f(x)=(m2-m-1)xm2-2m-3
∴m2-m-1=1,
解得m=2,或m=-1;
∵f(x)为减函数,
∴当m=2时,m2-2m-3=-3,幂函数为y=x-3,满足题意;
当m=-1时,m2-2m-3=0,幂函数为y=x0,不满足题意;
综上,幂函数y=x-3
所以m=2,
故选:A.

点评 本题考查了幂函数的定义与性质的应用问题,解题的关键是求出符合题意的m值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=(x-$\frac{1}{2}$)0+$\sqrt{x+2}$的定义域为(  )
A.$(-2,\frac{1}{2})$B.[-2,+∞)C.$[-2,\frac{1}{2})∪(\frac{1}{2},+∞)$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在锐角三角形ABC中,角A,B所对的边分别为a,b,若2asinB=b,则角A=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{12}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设e1,e2为平面上夹角为θ($0<θ≤\frac{π}{2}$)的两个单位向量,O为平面上的一个固定点,P为平面上任意一点,当$\overrightarrow{OP}=x{e_1}+y{e_2}$时,定义(x,y)为点P的斜坐标.现有两个点A,B的斜坐标分别为(x1,y1),(x2,y2).则A,B两点的距离为$\sqrt{{{({{x_1}-{x_2}})}^2}+{{({{y_1}-{y_2}})}^2}+2({{x_1}-{x_2}})({{y_1}-{y_2}})cosθ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+$\sqrt{3}$y=0相切于M(3,-$\sqrt{3}$)点,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的一元二次方程x2-(m+2)x+4=0有两个不相等的正实数根,求实数m取值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设变量x,y满足约束条件:$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则$\frac{y}{x}$的取值范围为[$\frac{1}{2},2$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若f(sinx)=cos2x,那么f(cosx)等于(  )
A.sin2xB.cos2xC.-sin2xD.-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设实数a使得不等式|x-1|+|x-3|≥a2,对任意实数x恒成立,则满足条件的实数a的范围是[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案