精英家教网 > 高中数学 > 题目详情
19.${(2\frac{7}{9})^{\frac{1}{2}}}$-(-8.4)0-lg0.00032+(1.5)-2-5lg5.

分析 根据分数指数幂的运算及对数的运算进行运算即可.

解答 解:原式=$(\frac{25}{9})^{\frac{1}{2}}-1-lg(32×1{0}^{-5})+(\frac{2}{3})^{2}-5lg5$
=$\frac{5}{3}-1-lg{2}^{5}-lg1{0}^{-5}+\frac{4}{9}-5lg5$
=$\frac{5}{3}-1-5lg2+5+\frac{4}{9}-5lg5$
=$\frac{5}{3}-1+5+\frac{4}{9}-5(lg2+lg5)$
=$\frac{5}{3}-1+5+\frac{4}{9}-5$
=$\frac{10}{9}$.

点评 考查分数指数幂的运算,以及对数的运算性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.关于x的方程-3cos2x+5sinx+1=0的解集为{x|x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(1-x)=1-f(x),且an=f(0)+f(${\frac{1}{n}}$)+f(${\frac{2}{n}}$)+…+f(${\frac{n-1}{n}}$)+f(1),则{${\frac{1}{{{a_n}{a_{n+1}}}}}\right.$}前100项之和为(  )
A.1B.$\frac{1}{2}$C.$\frac{99}{50}$D.$\frac{100}{51}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知y=sin(ωx+ϕ)(ω>0,ϕ∈[0,2π)的部分图象如图所示,则φ=(  )
A.$\frac{3π}{2}$B.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x<0,则$x+\frac{1}{x}$的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+a|+|x-2|,其中a为实常数.
(1)若函数f (x)的最小值为3,求a的值;
(2)若当x∈[1,2]时,不等式f(x)≤|x-4|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F为抛物线y2=2px(p>0)的焦点,过点F的直线与抛物线相交于A,B,则下列各式为定值的是(  )
A.|AF|+|BF|B.|AF|•|BF|C.|BF|2+|AF|2D.$\frac{1}{|AF|}+\frac{1}{|BF|}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=msinx+ncosx,且$f(\frac{π}{4})$是它的最大值(其中m,n为常数,且mn≠0),给出下列命题:
①$f(x+\frac{π}{4})$为偶函数                  
②函数f(x)的图象关于点$(\frac{7π}{4},0)$对称
③$f(-\frac{3π}{4})$是函数f(x)的最小值       
④函数f(x)的图象在y轴右侧与直线$y=\frac{m}{2}$的交点按横坐标从小到大依次记为P1,P2,P3,P4,…,则|P2P4|=π;
则正确的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲,乙两位数学爱好者玩抛掷骰子的游戏,甲先掷一枚骰子,记向上的点数为a,乙后掷一枚骰子,记向上的点数为b.
(1)求事件“a+b≥9”的概率;
(2)游戏规定:ab≥10时,甲赢;否则,乙赢.问:这个游戏规定公平吗?请说明理由.

查看答案和解析>>

同步练习册答案