精英家教网 > 高中数学 > 题目详情
16.关于x的方程-3cos2x+5sinx+1=0的解集为{x|x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z}.

分析 利用同角三角函数关系式,将方程化简,转化为二次函数问题求解即可.

解答 解:方程-3cos2x+5sinx+1=0可化为:方程3sin2x+5sinx-2=0,
解得:sinx=$\frac{1}{3}$,或sinx=-2(舍去),
∴x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z,
故答案为:{x|x=arcsin$\frac{1}{3}$+2kπ,或x=π-arcsin$\frac{1}{3}$+2kπ,k∈Z}

点评 本题考查了同角三角函数关系式的转化和三角函数的特殊值的计算和二次方程的解法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知f(x)是定义在R上的奇函数,则一定有(  )
A.f(x)+f(-x)=0B.f(x)-f(-x)=0C.$\frac{f(-x)}{f(x)}=-1$D.$\frac{f(-x)}{f(x)}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,A是椭圆C的上顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°
(1)求椭圆C的离心率;
(2)若a=2,求△AF1B的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若△ABC在平面α外,它的三条边所在的直线分别交α于P、Q、R,则点Q∈直线PR(用符号表示它们的位置关系).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知关于x的不等式|x-2|-|x-3|≤m对x∈R恒成立.
(1)求实数m的最小值;
(2)若a,b,c为正实数,k为实数m的最小值,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=k,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.关于x的不等式x2-(2a+1)x+(a2+a-2)>0、x2-(a2+a)x+a3<0的解集分别为M和N
(1)试求M和N
(2)若M∩N=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为15万元,并且每生产1百台的生产成本为5万元(总成本=固定成本+生产成本),销售收入R(x)=$\left\{\begin{array}{l}{-2{x}^{2}+21x+1(0≤x≤5)}\\{56(x>5)}\end{array}\right.$,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本)
(2)求甲厂可获得利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线C:x2=8y的焦点为F,直线y=x+2与C交于P、Q两点,则$\frac{1}{|PF|}$+$\frac{1}{|OF|}$的值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.${(2\frac{7}{9})^{\frac{1}{2}}}$-(-8.4)0-lg0.00032+(1.5)-2-5lg5.

查看答案和解析>>

同步练习册答案