精英家教网 > 高中数学 > 题目详情
12.已知曲线y=xn在点(1,0)处的切线与直线2x-y+1=0平行,则实数n=2.

分析 先求曲线的导数,求出切点处的斜率,然后解n即可.

解答 解:直线2x-y+1=0的斜率为2,曲线y=xn-1在点(1,0)处的切线的斜率也是2;
而y′=nxn-1,所以f′(1)=n=2
故答案为:2.

点评 本题考查曲线的导数,和直线的斜率的关系,直线的平行,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知y=f(x)为二次函数,且f(0)=-5,f(-1)=-4,f(2)=-5,求此二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.有两枚正四面体骰子,各个面分别标有数字1,2,3,4,若同时抛掷两枚骰子,则两枚骰子底面2个数之差的绝对值为2的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求满足下列条件的直线方程:
(1)在y轴上的截距为-3,且经过点(-2,1);
(2)过点(-3,1),且与x轴垂直;
(3)过点(-3,4)在两轴上截距之和为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,且两个坐标系取相同的单位长度,已知圆C1:ρ=-2cosθ,曲线${C_2}:\left\{{\begin{array}{l}{x=2cost}\\{y=sint}\end{array}}\right.$(t为参数).
(Ⅰ)求圆C1和曲线C2的普通方程;
(Ⅱ)过圆C1的圆心C1且倾斜角为$\frac{π}{3}$的直线l交曲线C2于A,B两点,求圆心C1到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.经过点(-1,2)且与直线3x-5y+6=0垂直的直线的方程为(  )
A.3x-5y+13=0B.5x+3y-1=0C.5x+3y+1=0D.5x-3y+11=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F,过F斜率为1的直线交椭圆于M,N两点,MN的垂直平分线交x轴于点P.若$\frac{|MN|}{|PF|}$=4,则椭圆C的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=xlnx.
(1)求曲线f(x)在x=e处的切线方程.
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z=$\frac{i}{\sqrt{3}+i}$(i为虚数单位),则z•$\overline{z}$=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案