分析 (Ⅰ)由已知点的坐标求出向量的坐标,然后利用向量数量积为0证明△ABC为直角三角形;
(Ⅱ)利用共线向量基本定理可得$\overrightarrow{OQ}=λ\overrightarrow{OA}$(λ∈R),求出$\overrightarrow{OQ}$的坐标,进一步求得$\overrightarrow{QB}$、$\overrightarrow{QC}$的坐标,把$\overrightarrow{QB}$•$\overrightarrow{QC}$化为含有λ的代数式,配方求得答案.
解答 解:(Ⅰ)△ABC为直角三角形.
证明如下:
∵A(1,2),B(2,3),C(-2,5),
∴$\overrightarrow{AB}=(1,1),\overrightarrow{AC}=(-3,3)$,
则$\overrightarrow{AB}•\overrightarrow{AC}=1×(-3)+1×3=0$,
∴$\overrightarrow{AB}•\overrightarrow{AC}=0$.
即△ABC为直角三角形;
(Ⅱ)由题意知,A,O,Q三点共线,
设$\overrightarrow{OQ}=λ\overrightarrow{OA}$(λ∈R),
则$\overrightarrow{OQ}=(λ,2λ)$,
∴$\overrightarrow{QB}=\overrightarrow{OB}-\overrightarrow{OQ}=(2-λ,3-2λ)$,
$\overrightarrow{QC}=\overrightarrow{OC}-\overrightarrow{OQ}=(-2-λ,5-2λ)$,
因此$\overrightarrow{QB}•\overrightarrow{QC}=(2-λ,3-2λ)•(-2-λ,5-2λ)$
=(2-λ)(-2-λ)+(3-2λ)(5-2λ)=5λ2-16λ+11
=$5(λ-\frac{8}{5})^{2}-\frac{9}{5}$.
∴当$λ=\frac{8}{5}$时,$\overrightarrow{QB}$•$\overrightarrow{QC}$取得最小值$-\frac{9}{5}$,此时$\overrightarrow{OQ}=(\frac{8}{5},\frac{16}{5})$.
点评 本题考查平面向量的坐标运算及数量积运算,训练了利用配方法求函数的最值,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (2,3) | B. | (3,+∞) | C. | [2,3] | D. | (0,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ | C. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | D. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {an}是等差数列 | B. | {bn}是等比数列 | C. | $\frac{{a}_{n}}{{b}_{n}}$=$\frac{\sqrt{2}}{2}$n | D. | anbn=$\frac{\sqrt{2}}{8}$n2(n+7) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com