精英家教网 > 高中数学 > 题目详情
某同学参加政治、历史、生物、地理四门学科的学业水平测试,假设该同学历史学科测试成绩为A的概率为
4
5
,其余三门学科测试成绩为A的概率均为
1
2
,且四门学科测试成绩是否为A相互独立.
(1)求该同学恰有两门学科测试成绩为A的概率;
(2)设四门学科中测试成绩为A的门数为ξ,求ξ的分布列及数学期望.
考点:离散型随机变量的期望与方差
专题:概率与统计
分析:(1)设事件Ai(i=1,2,3,4)分别表示“该同学政治、历史、生物、地理”四门学科测试成绩为A”,则P(A1)=
4
5
,P(A2)=P(A3)=P(A4)=
1
2
,由此能求出该同学恰有两门学科测试成绩为A的概率.
(2)随机变量ξ的可能取值是0,1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列及数学期望.
解答: 解:(1)设事件Ai(i=1,2,3,4)分别表示
“该同学政治、历史、生物、地理”四门学科测试成绩为A”,
则P(A1)=
4
5
,P(A2)=P(A3)=P(A4)=
1
2

该同学恰有两门学科测试成绩为A的概率是:
P=P(A1A2
.
A3
.
A4
)+P(A1A3
.
A2
.
A4
)+P(A1A4
.
A2
.
A3

+P(A2A3
.
A1
.
A4
)+P(A2A4
.
A1
.
A3
)+P(A3A4
.
A1
.
A2

=
4
5
C
1
3
×
1
2
×(1-
1
2
)2
+C
2
3
×(
1
2
)2×(1-
4
5
)×(1-
1
2
)
=
3
8

∴该同学恰有两门学科测试成绩为A的概率是
3
8

(2)随机变量ξ的可能取值是0,1,2,3,4,
P(ξ=0)=
1
5
×(
1
2
)3=
1
40

P(ξ=1)=
4
5
×(
1
2
)3+
C
1
3
×(
1
2
)3×
1
5
=
7
40

P(ξ=2)═
4
5
C
1
3
×
1
2
×(1-
1
2
)2
+C
2
3
×(
1
2
)2×(1-
4
5
)×(1-
1
2
)
=
3
8

P(ξ=3)=
1
5
×(
1
2
)3
C
2
3
(
1
2
)3×
4
5
=
13
40

P(ξ=4)=
4
5
×(
1
2
)3
=
1
10

∴ξ的分布列为:
 ξ 0
 P 
1
40
 
7
40
 
3
8
 
13
40
 
1
10
∴Eξ=
1
40
+1×
7
40
+2×
3
8
+3×
13
40
+4×
1
10
=
23
10
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是
1
2
.同样也假定D受A、B和C感染的概率都是
1
3
.在这种假定之下,B、C、D中直接受A感染的人数x就是一个随机变量.写出x的分布列(不要求写出计算过程),并求x的均值(即数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,四棱锥S-ABCD底面为平行四边形,E、F分别为边AD、SB中点,
(1)求证:EF∥平面SDC.
(2)AB=SC=1,EF=
3
2
,求EF与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了宣传“低碳生活”,来自五个不同生活小区的5名志愿者利用周末休息时间到这五个小区进行演讲.每个志愿者随机地选择去一个生活小区,且每个生活小区只去一个人.
(1)求甲恰好去自己生活小区宣传的概率;
(2)求甲、乙都没有去自己生活小区宣传的概率;
(3)记五人中恰好去自己生活小区宣传的人数为X,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx-cosωx,sinωx),
b
=(sinωx+cosωx,
3
cosωx).设函数f(x)=
a
b
+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
1
2
,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
π
5
,0),求函数f(x)在区间[0,
π
2
]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数y=Asin(ωx+φ)(A,ω>0,|φ|<π)图象的一段.
(1)求其解析式;
(2)若将y=Asin(ωx+φ)的图象向左平移
π
6
个单位长度后得y=f(x),求f(x)的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3道题,每人答对其中2题就停止答题,即为闯关成功.已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是
2
3

(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设乙答对题目的个数为η,求η的方差;
(Ⅲ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x,y的二元一次方程组为
a2
2-1
x
y
=
e
f

(Ⅰ)若该方程组有唯一解,求实数a的取值范围;
(Ⅱ)若a=2,且该方程组存在非零解
x
y
满足
e
f
x
y
,求λ的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有5只红球和4只黑球,从袋中任取4只球,取到1只红球得3分,取到1只黑球得1分,设得分为随机变量ξ,则ξ≥8的概率P(ξ≥8)=
 

查看答案和解析>>

同步练习册答案