精英家教网 > 高中数学 > 题目详情
12.过点A(0,1)作直线,与双曲线${x^2}-\frac{y^2}{9}=1$有且只有一个公共点,则符合条件的直线的条数为(  )
A.0B.2C.4D.无数

分析 用代数法,先联立方程,消元后得到一个方程,先研究相切的情况,即判别式等于零,再研究与渐近线平行的情况.

解答 解:设过点(0,1)与双曲线${x^2}-\frac{y^2}{9}=1$有且只有一个公共点的直线为y=kx+1.
根据题意:$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}-\frac{{y}^{2}}{9}=1}\end{array}\right.$,
消去y整理得(9-k2)x2-2kx-10=0,
∵△=0,
∴k=±$\sqrt{10}$.
又注意直线恒过点(0,1)且渐近线的斜率为±3,
与渐近线平行时也成立.
故过点(0,1)与双曲线${x^2}-\frac{y^2}{9}=1$有且只有一个公共点的直线有4条.
故选C.

点评 本题主要考查直线与双曲线的位置关系,在只有一个公共点时,不要忽视了与渐近线平行的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知点F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是直角三角形,则该双曲线的离心率为1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{\begin{array}{l}x+1(x≤1)\\ \sqrt{x}(x>1).\end{array}\right.$若f(x)>f(x+1),则x的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,已知△ABC的顶点B、C恰好是双曲线M:$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦点,且顶点A在双曲线M的右支上,则$\frac{sinC-sinB}{sinA}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a,b是不相等的两个正数,且blna-alnb=a-b,给出下列结论:①a+b-ab>1;②a+b>2;③$\frac{1}{a}$+$\frac{1}{b}$>2.其中所有正确结论的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图(1),在等腰梯形ABCD中,AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为EC中点,现将梯形ABCD沿EF所在直线折起,使平面EFCB⊥平面EFDA,如图(2)所示,N是CD的中点.
(Ⅰ)求证:MN∥平面ADFE;
(Ⅱ)求四棱锥M-EFDA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{-{x}^{2}-2x,x≤0}\\{\;}\end{array}\right.$,则不等式f(x)≤0的解集为{x|x≥1或x=0或x≤-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1,直角梯形ABCD中,AB∥CD,∠BAD=90°,AB=AD=2,CD=4,点E为线段AB上异于A,B的点,且EF∥AD,沿EF将面EBCF折起,使平面EBCF⊥平面AEFD,如图2.
(Ⅰ)求证:AB∥平面DFC;
(Ⅱ)当三棱锥F-ABE体积最大时,求钝二面角B-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设复数z1,z2在复平面内的点关于实轴对称,z1=1+i,则$\frac{z_1}{z_2}$=(  )
A.-iB.iC.-1D.1

查看答案和解析>>

同步练习册答案