精英家教网 > 高中数学 > 题目详情

已知二次函数处取得极值,且在点处的切线与直线平行.  
(1)求的解析式;
(2)求函数的单调递增区间及极值。
(3)求函数的最值。

(1)(2)函数g(x)的单调递增区间为(﹣∞,),(1,+∞).在x2=1有极小值为0.在有极大值.(3)函数g(x)的最大值为2,最小值为0.

解析试题分析:(1)由f(x)=ax2+bx﹣3,知f′(x)=2ax+b.由二次函数f(x)=ax2+bx﹣3在x=1处取得极值,且在(0,﹣3)点处的切线与直线2x+y=0平行,知,由此能求出f(x).
(2)由f(x)=x2﹣2x﹣3,知g(x)=xf(x)+4x=x3﹣2x2+x,所以g′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1).令g′(x)=0,得,x2=1.列表讨论能求出函数g(x)=xf(x)+4x的单调递增区间及极值.
(3)由g(0)=0,g(2)=2,结合(2)的结论,能求出函数g(x)的最大值和最小值.
试题解析:(1)由,可得. 由题设可得    即
解得,.所以.
(2)由题意得,所以.令,得,.














 
4/27
 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在区间上存在极值点,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场预计从2013年1月份起的前x个月,顾客对某商品的需求总量p(x)(单位:件)与x的关系近似的满足,且)。该商品第x月的进货单价q(x)(单位:元)与x的近似关系是

(1)写出这种商品2013年第x月的需求量f(x)(单位:件)与x的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问该商场2013年第几个月销售该商品的月利润最大,最大月利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在实数集上的函数
⑴求函数的图象在处的切线方程;
⑵若对任意的恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(k为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
(1)求k的值及的单调区间;
(2)设其中的导函数,证明:对任意,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-ax(a∈R,e为自然对数的底数).
(1)讨论函数f(x)的单调性;
(2)若a=1,函数在区间(0,+)上为增函数,求整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,
(1)求导数
(2)若,求在[-2,2] 上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设a>0.若曲线与直线x=a,y=0所围成封闭图形的面积为a,则a=____

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数,若曲线上在点处的切线斜率为,则              .

查看答案和解析>>

同步练习册答案