精英家教网 > 高中数学 > 题目详情

为实数,
(1)求导数
(2)若,求在[-2,2] 上的最大值和最小值.

 (2) 最大值为最小值为

解析试题分析:⑴将括号打开函数变成多项式函数来求导数;也可利用积的导数法则来求解;(2)由结合(1)的结果可求出a值,从而获得的具体解析式,进而获得导数,令其等于零,求得其可能极值,并求出端点的函数值,比较其大小就可求出在[-2,2] 上的最大值和最小值.
试题解析:⑴由原式得
⑵由 得,
此时有.
或x="-1" ,

所以f(x)在[-2,2]上的最大值为最小值为
考点:1.函数求导;2.函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数处取得极值,且在点处的切线与直线平行.  
(1)求的解析式;
(2)求函数的单调递增区间及极值。
(3)求函数的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,抛物线轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为,其它的三个边角地块每单位面积价值元.
(1)求等待开垦土地的面积;
(2)如何确定点C的位置,才能使得整块土地总价值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的两个极值点.
(1)试确定常数的值;
(2)试判断是函数的极大值点还是极小值点,并求出相应极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数上的值域;
(2)若,对恒成立,
求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,( 为常数,为自然对数的底).
(1)当时,求
(2)若时取得极小值,试确定的取值范围;
(3)在(2)的条件下,设由的极大值构成的函数为,将换元为,试判断曲线是否能与直线为确定的常数)相切,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求f(x)的单调区间和极值;
(2)关于的方程f(x)=a在区间上有三个根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)若对于任意的,都存在,使得,求的取值范围

查看答案和解析>>

同步练习册答案